Tensor[CottonTensor] - calculate the Cotton tensor for a metric
Calling Sequences
CottonTensor(g, C, R)
Parameters
g - a metric tensor on the tangent bundle of a manifold
C - (optional) the Christoffel connection for the metric g
R - (optional) the curvature tensor of the metric g keyword - (optional) the keyword argument indextype = ["cov_bas", "cov_bas", "cov_bas"] or indextype = ["con_bas", "con_bas"]
Description
Examples
See Also
Let Pab be the Schouten tensor for the metric gab with covariant derivative ∇a. The Cotton tensor is defined (in any dimension) by
Cabc=∇bPca−∇cPba .
In 3-dimensions an alternative form of the Cotton tensor is a symmetric tensor density of weight one:
Yij= −12eibcgjaCabc .
Here eiab denotes the contravariant permutation symbol, which is a tensor density of weight one. If desired one can convert Yih to a tensor by multiplication with a suitable MetricDensity.
Cabc is completely trace-free and anti-symmetric on its last two indices; it is divergence-free on its first index. The tensor Yij is symmetric, trace-free, and divergence-free. Cabc is conformally invariant. Yij is a relative conformal invariant.
If the optional arguments are not supplied, the Christoffel symbol and curvature tensor are computed directly from the metric, otherwise the supplied Christoffel symbol and curvature tensor are used.
The default output is Cabc as shown above. This output can also be obtained with keyword argument indextype = ["cov_bas", "cov_bas", "cov_bas"]. The keyword argument indextype = ["con_bas", "con_bas"] returns the tensor Yij described above.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CottonTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CottonTensor.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 3 dimensional manifold M and define a metric g1 on the tangent space of M.
DGsetup⁡x,y,z,M
frame name: M
g1≔evalDG⁡dx&tdx+x⁢z⁢dx&tdy+dy&tdx+y2⁢dy&tdz+dz&tdy
g1:=dx⁢dx+x⁢z⁢dx⁢dy+x⁢z⁢dy⁢dx+y2⁢dy⁢dz+y2⁢dz⁢dy
CotTen1≔CottonTensor⁡g1
CotTen1:=−−2⁢y2+x2⁢dx⁢dx⁢dyy5+−2⁢y2+x2⁢dx⁢dy⁢dxy5+x⁢2⁢z⁢y+5⁢dy⁢dx⁢dyy4−x⁢2⁢z⁢y+5⁢dy⁢dy⁢dxy4−−2⁢y2+x2⁢dy⁢dy⁢dzy3+−2⁢y2+x2⁢dy⁢dz⁢dyy3
Check that the Cotton tensor CotTen1 is trace-free.
h1≔InverseMetric⁡g1
h1:=D_x⁢D_x−x⁢z⁢D_x⁢D_zy2+D_y⁢D_zy2−x⁢z⁢D_z⁢D_xy2+D_z⁢D_yy2+x2⁢z2⁢D_z⁢D_zy4
ContractIndices⁡h1,CotTen1,1,1,2,2
0⁢dx
Check that the Cotton tensor is divergence-free on its first index.
Ch1≔Christoffel⁡g1
Ch1:=12⁢x2⁢z⁢D_x⁢dx⁢dyy2+12⁢x2⁢z⁢D_x⁢dy⁢dxy2−2⁢x⁢z⁢D_x⁢dy⁢dyy+12⁢x⁢D_x⁢dy⁢dz+12⁢x⁢D_x⁢dz⁢dy−12⁢x⁢D_y⁢dx⁢dyy2−12⁢x⁢D_y⁢dy⁢dxy2+2⁢D_y⁢dy⁢dyy+z⁢D_z⁢dx⁢dxy2−12⁢x3⁢z2⁢D_z⁢dx⁢dyy4+12⁢x⁢D_z⁢dx⁢dzy2−12⁢x3⁢z2⁢D_z⁢dy⁢dxy4+2⁢x2⁢z2⁢D_z⁢dy⁢dyy3−12⁢x2⁢z⁢D_z⁢dy⁢dzy2+12⁢x⁢D_z⁢dz⁢dxy2−12⁢x2⁢z⁢D_z⁢dz⁢dyy2
ContractIndices⁡h1,CovariantDerivative⁡CotTen1,Ch1,1,1,2,4
0⁢dx⁢dx
Check that the Cotton tensor is a conformal invariant of the metric. We use the optional calling sequence in which the connection and curvature are specified.
g2≔f⁡x,z&multg1
g2:=f⁡x,z⁢dx⁢dx+f⁡x,z⁢x⁢z⁢dx⁢dy+f⁡x,z⁢x⁢z⁢dy⁢dx+f⁡x,z⁢y2⁢dy⁢dz+f⁡x,z⁢y2⁢dz⁢dy
Ch2≔Christoffel⁡g2:
R2≔CurvatureTensor⁡Ch2:
CotTen2≔CottonTensor⁡g2,Ch2,R2
CotTen2:=−−2⁢y2+x2⁢dx⁢dx⁢dyy5+−2⁢y2+x2⁢dx⁢dy⁢dxy5+x⁢2⁢z⁢y+5⁢dy⁢dx⁢dyy4−x⁢2⁢z⁢y+5⁢dy⁢dy⁢dxy4−−2⁢y2+x2⁢dy⁢dy⁢dzy3+−2⁢y2+x2⁢dy⁢dz⁢dyy3
evalDG⁡CotTen2−CotTen1
0
Example 2.
We continue with the manifold and metric g1 from Example 1. We check that the alternative form of the Cotton tensor is the dual of the default form of the tensor.
Y≔CottonTensor⁡g1,indextype=con_bas,con_bas
Y:=−2⁢y2+x2⁢D_x⁢D_zy5+−2⁢y2+x2⁢D_z⁢D_xy5−x⁢x2⁢z+5⁢y⁢D_z⁢D_zy7
CotUp≔RaiseLowerIndices⁡h1,CotTen1,1
CotUp:=−−2⁢y2+x2⁢D_x⁢dx⁢dyy5+−2⁢y2+x2⁢D_x⁢dy⁢dxy5+x⁢x2⁢z+5⁢y⁢D_z⁢dx⁢dyy7−x⁢x2⁢z+5⁢y⁢D_z⁢dy⁢dxy7−−2⁢y2+x2⁢D_z⁢dy⁢dzy5+−2⁢y2+x2⁢D_z⁢dz⁢dyy5
eps≔PermutationSymbol⁡con_bas
eps:=D_x⁢D_y⁢D_z−D_x⁢D_z⁢D_y−D_y⁢D_x⁢D_z+D_y⁢D_z⁢D_x+D_z⁢D_x⁢D_y−D_z⁢D_y⁢D_x
Z≔ContractIndices⁡eps,−12⁢CotUp,2,2,3,3
Z:=−2⁢y2+x2⁢D_x⁢D_zy5+−2⁢y2+x2⁢D_z⁢D_xy5−x⁢x2⁢z+5⁢y⁢D_z⁢D_zy7
evalDG⁡Y−Z
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, ParallelTransportEquations, ProjectiveCurvature, WeylTensor
Download Help Document