Tensor[EinsteinTensor] - calculate the Einstein tensor for a metric
Calling Sequences
EinsteinTensor(g, R)
Parameters
g - a metric tensor
R - (optional) the curvature tensor of the metric g
Description
Examples
See Also
Let Ricg and Sg be the Ricci tensor and Ricci scalar for the metric g, respectively. The covariant form of the Einstein tensor is Eing = Ricg − 12Sgg. The contravariant form is obtained by raising both indices of the covariant Einstein tensor with the metric g. In terms of components,
Gab=Rab−12Sgab.
The program EinsteinTensor(g, R) returns the contravariant form of the Einstein tensor. This tensor is symmetric and its covariant divergence vanishes.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form EinsteinTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-EinsteinTensor.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Create a 4 dimensional manifold M, define a metric g1, and calculate the Einstein tensor E1.
DGsetup⁡x,y,z,w,M1
frame name: M1
g1≔evalDG⁡dx&tdx+dx&tdy+dy&tdx+x⁢y⁢dz&tdw+dw&tdz
g1:=dx⁢dx+dx⁢dy+dy⁢dx+x⁢y⁢dz⁢dw+x⁢y⁢dw⁢dz
Calculate the Christoffel symbols for the metric g1.
C1≔Christoffel⁡g1:
Calculate the Einstein tensor for the metric g1.
E1≔EinsteinTensor⁡g1
E1:=12⁢D_x⁢D_xy2−14⁢−4⁢y+x⁢D_x⁢D_yy2⁢x−14⁢−4⁢y+x⁢D_y⁢D_xy2⁢x+14⁢−2⁢x⁢y+x2+2⁢y2⁢D_y⁢D_yx2⁢y2+14⁢2⁢y+x⁢D_z⁢D_wy3⁢x2+14⁢2⁢y+x⁢D_w⁢D_zy3⁢x2
Check that the covariant divergence of the Einstein tensor E1 vanishes.
ContractIndices⁡CovariantDerivative⁡E1,C1,2,3
0⁢D_x
Physics[Einstein], DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], ContractIndices, CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], SectionalCurvature, RicciScalar, RicciTensor, Physics[Ricci]
Download Help Document