DifferentialGeometry/Tensor/EpsilonSpinor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/EpsilonSpinor

Tensor[EpsilonSpinor] - create an epsilon spinor

Calling Sequences

     EpsilonSpinor(indexType, spinorType, fr)

Parameters

   indexType  - a string, either "cov" or "con"

   spinorType - a string, either "spinor" or "barspinor"

   fr         - (optional) the name of a defined frame

 

Description

Examples

See Also

Description

• 

The epsilon spinor is a rank 2 spinor which is fully skew-symmetric and whose component values are 1 or -1.

• 

The command EpsilonSpinor(indexType, spinorType) returns the epsilon symbol of the type specified by indexType and spinorType in the current frame unless the frame is explicitly specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form EpsilonSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-EpsilonSpinor.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle M with base coordinates x,y,z,t and fiber coordinates z1,z2,w1,w2.

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Here are the 4 epsilon spinors one can define:

M > 

P1EpsilonSpinorcov,spinor

P1:=dz1dz2dz2dz1

(2.2)
M > 

P2EpsilonSpinorcon,spinor

P2:=D_z1D_z2D_z2D_z1

(2.3)
M > 

P3EpsilonSpinorcov,barspinor

P3:=dw1dw2dw2dw1

(2.4)
M > 

P4EpsilonSpinorcon,spinor

P4:=D_z1D_z2D_z2D_z1

(2.5)

 

Define some other manifold N.

M > 

DGsetupx,y,z,t,N

frame name: N

(2.6)

 

The current frame is N.  Because there are no fiber variables, one cannot calculate an epsilon spinor in this frame. To now re-calculate the epsilon spinor P1, either use the ChangeFrame command or pass EpsilonSpinor the frame name M as a third argument.

N > 

EpsilonSpinorcov,spinor,M

dz1dz2dz2dz1

(2.7)

 

Example 2.

The covariant and contravariant forms of the epsilon spinors are inverses of each other.

M > 

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.8)
M > 

P1EpsilonSpinorcov,spinor

P1:=dz1dz2dz2dz1

(2.9)
M > 

P2EpsilonSpinorcon,spinor

P2:=D_z1D_z2D_z2D_z1

(2.10)

 

Contract the first index of P1 with the first index of P2.  The result is the Kronecker delta spinor.

M > 

P5ContractIndicesP2,P1,1,1

P5:=D_z1dz1+D_z2dz2

(2.11)
M > 

P5&minusKroneckerDeltaSpinorspinor

0D_z1dz1

(2.12)

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, ChangeFrame, ContractIndices, KroneckerDelta, Physics[KroneckerDelta], KroneckerDeltaSpinor, PermutationSymbol, Physics[LeviCivita], SolderForm