Tensor[FactorWeylSpinor] - factorize a rank 4 symmetric spinor
Calling Sequences
FactorWeylSpinor( W, PT)
Parameters
W - a symmetric rank 4 covariant spinor
PT - the Petrov type of the spinor W
Description
Examples
A rank 4 symmetric spinor WABCD can always be factorized as the symmetric product of rank 1 spinors,
WABCD = α(A βB γC δD).
The (non-unique) spinors αA , βB, γC , δD are called the principal spinors of W and the corresponding null vectors are called the principal null directions. The Petrov type of the spinor WABCD (see AdaptedSpinorDyad or PetrovType) determines the multiplicities of the principal spinors.
TYPE I. The principal spinors are all distinct, that is, non -proportional and WABCD = α(A βB γC δD).
TYPE II. Two of the principal spinors are proportional, WABCD = α(A αB γC δD), where αA , γC, δD are non-proportional.
TYPE III. Three of principal spinors are proportional, WABCD = α(A αB αC δD), where αA , δD are non-proportional.
TYPE D. Two pairs of the principal spinors are proportional, WABCD= α(A αB βC βD), where αA , βC are non-proportional. Equivalently, there is a spinor dyad (ιA , οC) and a complex number η such that WABCD= η⋅ ι(A ιB οC οD).
TYPE N. The principal spinors are all proportional, WABCD= α(A αB αC αD).
The command FactorWeylSpinor returns a list of 4 spinors [αA , βB, γC , δD ] and a scaling factor η such that WABCD= η⋅α(A βB γC δD).
The factorization of the Weyl spinor is computed from an adapted spinor dyad. See AdaptedSpinorDyad.
The command FactorWeylSpinor is part of the DifferentialGeometry:-Tensor package. It can be used in the form FactorWeylSpinor(...) only after executing the commands with(DifferentialGeometry) and with(Tensor), but can always be used by executing DifferentialGeometry:-Tensor:-FactorWeylSpinor(...).
with⁡DifferentialGeometry:with⁡Tensor:
We calculate a factorization of Weyl spinors of each Petrov type and we use the command SymmetrizeIndices to verify that the factorization is correct.
We first create a spinor bundle over a 4-dimensional spacetime.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,Spin
frame name: Spin
In order to construct the Weyl spinors for our examples, we need a basis for the vector space of symmetric rank 4 spinors. This we obtain from the GenerateSymmetricTensors command.
S≔GenerateSymmetricTensors⁡dz1,dz2,4
S:=dz1⁢dz1⁢dz1⁢dz1,14⁢dz1⁢dz1⁢dz1⁢dz2+14⁢dz1⁢dz1⁢dz2⁢dz1+14⁢dz1⁢dz2⁢dz1⁢dz1+14⁢dz2⁢dz1⁢dz1⁢dz1,16⁢dz1⁢dz1⁢dz2⁢dz2+16⁢dz1⁢dz2⁢dz1⁢dz2+16⁢dz1⁢dz2⁢dz2⁢dz1+16⁢dz2⁢dz1⁢dz1⁢dz2+16⁢dz2⁢dz1⁢dz2⁢dz1+16⁢dz2⁢dz2⁢dz1⁢dz1,14⁢dz1⁢dz2⁢dz2⁢dz2+14⁢dz2⁢dz1⁢dz2⁢dz2+14⁢dz2⁢dz2⁢dz1⁢dz2+14⁢dz2⁢dz2⁢dz2⁢dz1,dz2⁢dz2⁢dz2⁢dz2
Set the global environment variable _EnvExplicit to true to insure that our factorizations are free of RootOf expressions.
_EnvExplicit≔true:
Example 1. Type I
Define a rank 4 spinor W1.
W1≔DGzip⁡6,12,30,24,6,S,plus
W1:=6⁢dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+5⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+5⁢dz1⁢dz2⁢dz1⁢dz2+5⁢dz1⁢dz2⁢dz2⁢dz1+6⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+5⁢dz2⁢dz1⁢dz1⁢dz2+5⁢dz2⁢dz1⁢dz2⁢dz1+6⁢dz2⁢dz1⁢dz2⁢dz2+5⁢dz2⁢dz2⁢dz1⁢dz1+6⁢dz2⁢dz2⁢dz1⁢dz2+6⁢dz2⁢dz2⁢dz2⁢dz1+6⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W1 with respect to the given dyad basis dz1, dz2.
NP1≔NPCurvatureScalars⁡W1,dz1,dz2
NP1:=tablePsi4=6,Psi1=−6,Psi2=5,Psi3=−3,Psi0=6
Use the Newman-Penrose coefficients to find the Petrov type of W1.
PetrovType⁡NP1
I
Factor W1.
PS1,η1≔FactorWeylSpinor⁡W1,I
PS1,η1:=12+I−12⁢I⁢3⁢dz1+I⁢dz2,12−I−12⁢I⁢3⁢dz1−I⁢dz2,12+I+12⁢I⁢3⁢dz1+I⁢dz2,12−I+12⁢I⁢3⁢dz1−I⁢dz2,6
We check that this answer is correct by computing the symmetric tensor product of the 4 spinors PS1.
W1Check≔η1&multSymmetrizeIndices⁡PS11&tPS12&tPS13&tPS14,1,2,3,4,Symmetric
W1Check:=6⁢dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+5⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+5⁢dz1⁢dz2⁢dz1⁢dz2+5⁢dz1⁢dz2⁢dz2⁢dz1+6⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+5⁢dz2⁢dz1⁢dz1⁢dz2+5⁢dz2⁢dz1⁢dz2⁢dz1+6⁢dz2⁢dz1⁢dz2⁢dz2+5⁢dz2⁢dz2⁢dz1⁢dz1+6⁢dz2⁢dz2⁢dz1⁢dz2+6⁢dz2⁢dz2⁢dz2⁢dz1+6⁢dz2⁢dz2⁢dz2⁢dz2
W1&minusW1Check
0⁢dz1⁢dz1⁢dz1⁢dz1
Example 2. Type II
Define a rank 4 spinor W2.
W2≔DGzip⁡4,4,6,16,10,S,plus
W2:=4⁢dz1⁢dz1⁢dz1⁢dz1+dz1⁢dz1⁢dz1⁢dz2+dz1⁢dz1⁢dz2⁢dz1+dz1⁢dz1⁢dz2⁢dz2+dz1⁢dz2⁢dz1⁢dz1+dz1⁢dz2⁢dz1⁢dz2+dz1⁢dz2⁢dz2⁢dz1+4⁢dz1⁢dz2⁢dz2⁢dz2+dz2⁢dz1⁢dz1⁢dz1+dz2⁢dz1⁢dz1⁢dz2+dz2⁢dz1⁢dz2⁢dz1+4⁢dz2⁢dz1⁢dz2⁢dz2+dz2⁢dz2⁢dz1⁢dz1+4⁢dz2⁢dz2⁢dz1⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz1+10⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W2 with respect to the given dyad basis dz1, dz2.
NP2≔NPCurvatureScalars⁡W2,dz1,dz2
NP2:=tablePsi4=4,Psi1=−4,Psi2=1,Psi3=−1,Psi0=10
Find the Petrov type of W2.
PetrovType⁡NP2
II
Factor W2.
PS2,η2≔FactorWeylSpinor⁡W2,II
PS2,η2:=13⁢3⁢dz1+13⁢3⁢dz2,13⁢3⁢dz1+13⁢3⁢dz2,13⁢I⁢3+13⁢3⁢dz1+−23⁢I⁢3+13⁢3⁢dz2,−13⁢I⁢3+13⁢3⁢dz1+23⁢I⁢3+13⁢3⁢dz2,18
Note that the first two factors are identical.
PS21&minusPS22
0⁢dt
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors PS2.
W2Check≔η2&multSymmetrizeIndices⁡PS21&tPS22&tPS23&tPS24,1,2,3,4,Symmetric
W2Check:=4⁢dz1⁢dz1⁢dz1⁢dz1+dz1⁢dz1⁢dz1⁢dz2+dz1⁢dz1⁢dz2⁢dz1+dz1⁢dz1⁢dz2⁢dz2+dz1⁢dz2⁢dz1⁢dz1+dz1⁢dz2⁢dz1⁢dz2+dz1⁢dz2⁢dz2⁢dz1+4⁢dz1⁢dz2⁢dz2⁢dz2+dz2⁢dz1⁢dz1⁢dz1+dz2⁢dz1⁢dz1⁢dz2+dz2⁢dz1⁢dz2⁢dz1+4⁢dz2⁢dz1⁢dz2⁢dz2+dz2⁢dz2⁢dz1⁢dz1+4⁢dz2⁢dz2⁢dz1⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz1+10⁢dz2⁢dz2⁢dz2⁢dz2
W2&minusW2Check
Example 3. Type III
Define a rank 4 spinor W3.
W3≔DGzip⁡−8,−20⁢I,12,−4⁢I,4,S,plus
W3:=−8⁢dz1⁢dz1⁢dz1⁢dz1−I⁢dz2⁢dz2⁢dz1⁢dz2−5⁢I⁢dz1⁢dz1⁢dz2⁢dz1+2⁢dz1⁢dz1⁢dz2⁢dz2−I⁢dz2⁢dz1⁢dz2⁢dz2+2⁢dz1⁢dz2⁢dz1⁢dz2+2⁢dz1⁢dz2⁢dz2⁢dz1−I⁢dz2⁢dz2⁢dz2⁢dz1−5⁢I⁢dz2⁢dz1⁢dz1⁢dz1+2⁢dz2⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz1⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz2⁢dz1⁢dz1−5⁢I⁢dz1⁢dz2⁢dz1⁢dz1−I⁢dz1⁢dz2⁢dz2⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W3 with respect to the given dyad basis dz1, dz2.
NP3≔NPCurvatureScalars⁡W3,dz1,dz2
NP3:=tablePsi4=−8,Psi1=I,Psi2=2,Psi3=5⁢I,Psi0=4
Find the Petrov type of W3.
PetrovType⁡NP3
III
Factor W3.
PS3,η3≔FactorWeylSpinor⁡W3,III
PS3,η3:=−12⁢6+12⁢I⁢6⁢dz1+−12−12⁢I⁢6⁢dz2,−12⁢6+12⁢I⁢6⁢dz1+−12−12⁢I⁢6⁢dz2,−12⁢6+12⁢I⁢6⁢dz1+−12−12⁢I⁢6⁢dz2,19−19⁢I⁢6⁢dz1+−118−118⁢I⁢6⁢dz2,−4
Note that the first three factors are identical.
PS31&minusPS32,PS31&minusPS33
0⁢dt,0⁢dt
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors PS3.
W3Check≔η3&multSymmetrizeIndices⁡PS31&tPS32&tPS33&tPS34,1,2,3,4,Symmetric
W3Check:=−8⁢dz1⁢dz1⁢dz1⁢dz1−5⁢I⁢dz1⁢dz2⁢dz1⁢dz1−I⁢dz1⁢dz2⁢dz2⁢dz2+2⁢dz1⁢dz1⁢dz2⁢dz2−5⁢I⁢dz2⁢dz1⁢dz1⁢dz1+2⁢dz1⁢dz2⁢dz1⁢dz2+2⁢dz1⁢dz2⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz1⁢dz2−I⁢dz2⁢dz1⁢dz2⁢dz2+2⁢dz2⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz1⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz2⁢dz1+2⁢dz2⁢dz2⁢dz1⁢dz1−I⁢dz2⁢dz2⁢dz2⁢dz1−I⁢dz2⁢dz2⁢dz1⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz2
W3&minusW3Check
Example 4. Type D
Define a rank 4 spinor W4.
W4≔DGzip⁡3,−18,3,72,48,S,plus
W4:=3⁢dz1⁢dz1⁢dz1⁢dz1−92⁢dz1⁢dz1⁢dz1⁢dz2−92⁢dz1⁢dz1⁢dz2⁢dz1+12⁢dz1⁢dz1⁢dz2⁢dz2−92⁢dz1⁢dz2⁢dz1⁢dz1+12⁢dz1⁢dz2⁢dz1⁢dz2+12⁢dz1⁢dz2⁢dz2⁢dz1+18⁢dz1⁢dz2⁢dz2⁢dz2−92⁢dz2⁢dz1⁢dz1⁢dz1+12⁢dz2⁢dz1⁢dz1⁢dz2+12⁢dz2⁢dz1⁢dz2⁢dz1+18⁢dz2⁢dz1⁢dz2⁢dz2+12⁢dz2⁢dz2⁢dz1⁢dz1+18⁢dz2⁢dz2⁢dz1⁢dz2+18⁢dz2⁢dz2⁢dz2⁢dz1+48⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W4 with respect to the given dyad basis dz1, dz2.
NP4≔NPCurvatureScalars⁡W4,dz1,dz2
NP4:=tablePsi4=3,Psi1=−18,Psi2=12,Psi3=92,Psi0=48
Find the Petrov type of W4.
PetrovType⁡NP4
D
Factor W4.
PS4,η4≔FactorWeylSpinor⁡W4,D
PS4,η4:=dz1+dz2,dz1+dz2,−15⁢dz1+45⁢dz2,−15⁢dz1+45⁢dz2,75
Note that the first two factors and last two factors are identical.
PS41&minusPS42,PS43&minusPS44
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors PS4.
W4Check≔η4&multSymmetrizeIndices⁡PS41&tPS42&tPS43&tPS44,1,2,3,4,Symmetric
W4Check:=3⁢dz1⁢dz1⁢dz1⁢dz1−92⁢dz1⁢dz1⁢dz1⁢dz2−92⁢dz1⁢dz1⁢dz2⁢dz1+12⁢dz1⁢dz1⁢dz2⁢dz2−92⁢dz1⁢dz2⁢dz1⁢dz1+12⁢dz1⁢dz2⁢dz1⁢dz2+12⁢dz1⁢dz2⁢dz2⁢dz1+18⁢dz1⁢dz2⁢dz2⁢dz2−92⁢dz2⁢dz1⁢dz1⁢dz1+12⁢dz2⁢dz1⁢dz1⁢dz2+12⁢dz2⁢dz1⁢dz2⁢dz1+18⁢dz2⁢dz1⁢dz2⁢dz2+12⁢dz2⁢dz2⁢dz1⁢dz1+18⁢dz2⁢dz2⁢dz1⁢dz2+18⁢dz2⁢dz2⁢dz2⁢dz1+48⁢dz2⁢dz2⁢dz2⁢dz2
W4&minusW4Check
Example 5. Type N
Define a rank 4 spinor W5.
W5≔DGzip⁡1,12,54,108,81,S,plus
W5:=dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+9⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+9⁢dz1⁢dz2⁢dz1⁢dz2+9⁢dz1⁢dz2⁢dz2⁢dz1+27⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+9⁢dz2⁢dz1⁢dz1⁢dz2+9⁢dz2⁢dz1⁢dz2⁢dz1+27⁢dz2⁢dz1⁢dz2⁢dz2+9⁢dz2⁢dz2⁢dz1⁢dz1+27⁢dz2⁢dz2⁢dz1⁢dz2+27⁢dz2⁢dz2⁢dz2⁢dz1+81⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W5 with respect to the given dyad basis dz1, dz2.
NP5≔NPCurvatureScalars⁡W5,dz1,dz2
NP5:=tablePsi4=1,Psi1=−27,Psi2=9,Psi3=−3,Psi0=81
Find the Petrov type of W5.
PetrovType⁡NP5
N
Factor W5.
PS5,η5≔FactorWeylSpinor⁡W5,N
PS5,η5:=dz1+3⁢dz2,dz1+3⁢dz2,dz1+3⁢dz2,dz1+3⁢dz2,1
Note that all four factors are identical.
PS51&minusPS52,PS51&minusPS53,PS51&minusPS54
0⁢dt,0⁢dt,0⁢dt
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors PS5.
W5Check≔η5&multSymmetrizeIndices⁡PS51&tPS52&tPS53&tPS54,1,2,3,4,Symmetric
W5Check:=dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+9⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+9⁢dz1⁢dz2⁢dz1⁢dz2+9⁢dz1⁢dz2⁢dz2⁢dz1+27⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+9⁢dz2⁢dz1⁢dz1⁢dz2+9⁢dz2⁢dz1⁢dz2⁢dz1+27⁢dz2⁢dz1⁢dz2⁢dz2+9⁢dz2⁢dz2⁢dz1⁢dz1+27⁢dz2⁢dz2⁢dz1⁢dz2+27⁢dz2⁢dz2⁢dz2⁢dz1+81⁢dz2⁢dz2⁢dz2⁢dz2
W5&minusW5Check
See Also
DifferentialGeometry
Tensor
AdaptedSpinorDyad,
AdaptedNullTetrad
NPCurvatureScalars
NullVector
PetrovType
PrincipalNullDirections
WeylSpinor
Physics[Weyl]
Download Help Document