DifferentialGeometry/Tensor/KroneckerDeltaSpinor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/KroneckerDeltaSpinor

Tensor[KroneckerDeltaSpinor] - create the Kronecker delta spinor

Calling Sequences

     KroneckerDeltaSpinor(spinorType, fr)

Parameters

   spinorType - a string, either "spinor" or "barspinor"

   fr         - (optional) the name of a defined frame

 

Description

Examples

See Also

Description

• 

The Kronecker delta spinor is the type 11 spinor whose components in any coordinate system are given by the identity matrix.

• 

The command KroneckerDeltaSpinor(spinorType) returns a Kronecker delta spinor of the type specified by spinorType in the current frame unless the frame is explicitly specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDeltaSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDeltaSpinor.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle M with base coordinates x,y,z,t and fiber coordinates z1,z2,w1,w2.

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Here are the 2 Kronecker delta spinors one can define:

M > 

K1KroneckerDeltaSpinorspinor

K1:=D_z1dz1+D_z2dz2

(2.2)
M > 

K2KroneckerDeltaSpinorbarspinor

K2:=D_w1dw1+D_w2dw2

(2.3)

 

Define some other manifold N.

M > 

DGsetupx,y,z,t,N

frame name: N

(2.4)

 

The current frame is N. Because there are no fiber variables, one cannot calculate a Kronecker delta spinor in this frame. To now re-calculate the Kronecker delta spinor K1, either use the ChangeFrame command or pass KroneckerDeltaSpinor the frame name M as a second argument.

N > 

KroneckerDeltaSpinorspinor,M

D_z1dz1+D_z2dz2

(2.5)

 

Example 2.

The Kronecker delta spinor defines an identity mapping on spinors of the indicated type. The linear transformation associated to the Kronecker delta spinor K is defined by contracting the covariant index of K against the contravariant index of the spinor S1. We see that the result is S1 so that the linear transformation defined by K is indeed the identity transformation.

M > 

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.6)
M > 

KKroneckerDeltaSpinorspinor

K:=D_z1dz1+D_z2dz2

(2.7)
M > 

S1evalDGaD_z1+bD_z2

S1:=aD_z1+bD_z2

(2.8)
M > 

S2ContractIndicesS1,K,1,2

S2:=aD_z1+bD_z2

(2.9)

 

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, KroneckerDelta, PermutationSymbol, SolderForm