Laplacian - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[Laplacian] - find the Laplacian of a differential form with respect to a metric.

Calling Sequences

     Laplacian(g, ω)

Parameters

   g      - a covariant metric tensor on an  n-dimensional manifold M

   ω      - a differential form on M

 

Description

Examples

Description

• 

The Laplace-Beltrami operator Δ is the second order linear differential operator which acts on p-forms ω by

Δω=d δ +δ d ω.

• 

The δ differential operator is the first-order linear differential operator defined in terms of the exterior derivative operator d and the Hodge star operator * by

δω=1kdω ,

where ω is a p-form, k=np+n+1, and n is the dimension of the underlying manifold M. The form δω has degree p1. Since a metric tensor is needed to define the Hodge star operator * , a metric is also needed to define δ.

• 

The command Laplacian(g, ω) computes the Laplacian of the differential form ω with respect to the metric tensor g.

• 

The command Laplacian:-ExteriorDerivativeStar(g, ω) computes δ applied to ω.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Laplacian(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Laplacian.

Examples

withDifferentialGeometry:withTensor:

 

Define a manifold M with coordinates x,y,z and a metric g.

DGsetupx,y,z,M:

M > 

gevalDGxzdx&tdx+z2dy&tdy+dz&tdz

gxzdxdx+z2dydy+dzdz

(2.1)

 

Example 1.

Define a differential 1-form α and suppress the printing of the arguments of its coefficients with the PDEtools[declare] command.

M > 

αDGzipa,b,cx,y,z,dx,dy,dz,plus

αax,y,zdx+bx,y,zdy+cx,y,zdz

(2.2)
M > 

PDEtoolsdeclarea,b,cx,y,z

ax,y,zwill now be displayed asa

bx,y,zwill now be displayed asb

cx,y,zwill now be displayed asc

(2.3)

 

Compute the Laplacian of α.

M > 

mapexpand,Laplaciang,α

3ax2zx2+ax,xzx+cxz+azx3+ay,yz2+az2z+az,zdxby,yz2+2cyzbx2zx2+bx,xzxbz2z+bz,zdya2x2z2axxz2+3cz2z3c2z2+cz,z2byz3cx2x2z+cx,xxz+cy,yz2dz

(2.4)

 

Example 2.

Define a 2 form β and compute its Laplacian.

M > 

βDGzipa,b,cx,y,z,dx&wedgedy,dx&wedgedz,dy&wedgedz,plus

βadxdy+bdxdz+cdydz

(2.5)
M > 

mapexpand,Laplaciang,β

3ax2zx2+ax,xzxcxz+azx3+ay,yz2+2byz3az2z+az,zdxdy+3bx2zx2bx,xzxbzx3+2ayz3+b2z2bz2zbz,zby,yz2dxdz+cy,yz2+a2x2z2axxz2c2z2+cz2zcz,z+cx2x2zcx,xxzdydz

(2.6)

 

Example 3.

Compute the delta derivative of the 2 form β.

M > 

Laplacian:-ExteriorDerivativeStarg,β

2ay+bz+2z2bz2z2dxa+2xax+x2c2x2czz2zx2dybz+2xbxz+2x2cy2z2x2dz

(2.7)

See Also

DifferentialGeometry

Tensor

ExteriorDerivative

HodgeStar