MetricDensity - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[MetricDensity] - use a metric tensor to create a scalar density of a given weight

Calling Sequences

     MetricDensity(g, r)

Parameters

   g       - a metric tensor

   r       - a rational number

   option  - (optional) the keyword argument detmetric

 

Description

Examples

Description

• 

If g is a metric with components gij, then ρ=detgijr2 defines a scalar density of weight r.

• 

The program MetricDensity(g, r) returns the scalar density ρ.

• 

By default, it is assumed that the metric g has positive determinant. To calculate the proper metric density with respect to a metric with negative determinant, include the keyword argument detmetric = -1.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MetricDensity(...) only after executing the commands with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-MetricDensity.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a manifold M and define a metric tensor g1.

DGsetupx,y,z,M:

M > 

g1evalDGxdx&tdx+ydy&tdy+dz&tdz

g1:=xdxdx+ydydy+dzdz

(2.1)

 

Use g to make a tensor density of weight 1.

M > 

ρ1MetricDensityg1,1

ρ1:=xy

(2.2)

 

Display the density type of rho1.

M > 

Tools:-DGinfoρ1,TensorDensityType

bas,1

(2.3)

 

Example 2.

For indefinite metrics, the optional argument detmetric = -1 can be used to ensure that the metric density is real.

g2evalDGdx&tdx+dy&tdydz&tdz

g2:=dxdx+dydydzdz

(2.4)
M > 

rho2aMetricDensityg2,1

rho2a:=I

(2.5)
M > 

rho2bMetricDensityg2,1,detmetric=1

rho2b:=1

(2.6)

 

 

Example 3.

First create a rank 3 vector bundle E over a two-dimensional manifold M and define a metric tensor g3 on the fibers of E.

M > 

DGsetupx,y,u,v,w,E

frame name: E

(2.7)
E > 

g3evalDGxdu&tdu+ydv&tdv+xydw&tdw

g3:=xdudu+ydvdv+xydwdw

(2.8)

 

Use g3 to make a tensor density of weight -1.

E > 

ρ3MetricDensityg3,1

ρ3:=1x2y2

(2.9)

 

Display the density type of rho3.

E > 

Tools:-DGinfoρ3,TensorDensityType

vrt,1

(2.10)

See Also

DifferentialGeometry

Tensor

DGinfo

RaiseLowerIndices

Physics[g_]