DifferentialGeometry/Tensor/NPRicciIdentities - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/NPRicciIdentities

Tensor[NPRicciIdentities] - calculate the Newman Penrose version of the Ricci identities

Calling Sequences

     NPRicciIdentities(SpinCoeff, RicciCoeff, WeylCoeff, Idlist, NTetrad, ConjCoord)

Parameters

   SpinCoeff  - a table, the Newman Penrose spin coefficients

   RicciCoeff - a table, the Newman Penrose Ricci coefficients

   WeylCoeff  - a table, the Newman Penrose Weyl coefficients

   Idlist     - a list of strings, the Ricci identities to be computed

   NTetrad    - (optional) a list of 4 vectors defining a null tetrad

   ConjCoord  - (optional) keyword argument conjugatecoordinates = CC, where CC is a list of lists specifying conjugate coordinates

 

Description

Examples

See Also

Description

• 

The Newman-Penrose Ricci identities are a set of 24 equations which encode the usual formulas for the curvature tensor in terms of the Christoffel connection in terms of the NP spin coefficients and the NP curvature scalars.  The relative simplicity of the Newman-Penrose Ricci identities underscores the importance of this formalism.

• 

Given the tetrad, the spin-coefficients and the curvature scalars, the command NPRicciIdentities will calculate a specified list of the Ricci identities.

• 

The index set for the table SpinCoeff must be {"mu", "nu", "pi", "rho", "tau", "alpha", "beta", "epsilon", "gamma", "kappa", "lambda", "sigma"}.

• 

The index set for the table RicciCoeff must be {"Lambda", "Phi00", "Phi01", "Phi02", "Phi11", "Phi12", "Phi22"}.

• 

The index set for the table WeylCoeff must be {"Psi0", "Psi1", "Psi2", "Psi3", "Psi4"}.

• 

The equation list Idlist is a list of letters, chosen from {"a", "b", ..., "r"} or {"all"}.

• 

If the current frame is an anholonomic frame, then the 5th argument NTetrad is not required.

• 

See Details for Ricci and Bianchi Identities for a complete list of the Newman-Penrose Ricci Identities.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPRicciIdentities(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-NPRicciIdentities.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

Define a manifold S with coordinates t,x,y,z.

DGsetupt,x,y,z,S

frame name: S

(2.1)

 

Define a metric g of signature 1,1,1,1.

S > 

gevalDGx2dt&tdty2dx&tdxz2dy&tdyt2dz&tdz

gx2dtdty2dxdxz2dydyt2dzdz

(2.2)

 

Define a null tetrad NTetrad for the metric g.

S > 

NTetradevalDG12212xD_t+12212tD_z,12212xD_t12212tD_z,12212yD_x+12I212zD_y,12212yD_x12I212zD_y

NTetrad22xD_t+22tD_z,22xD_t22tD_z,22yD_x+I22zD_y,22yD_xI22zD_y

(2.3)

 

Calculate the NP spin coefficients defined by the null tetrad NTetrad.

S > 

SpinCoeffNPSpinCoefficientsNTetrad

SpinCoefftablenu=24xy,kappa=24xy,alpha=I42zy,rho=24tz,mu=24tz,epsilon=24tx,sigma=24tz,tau=24xy,pi=24xy,gamma=24tx,lambda=24tz,beta=I42zy

(2.4)

 

S > 

RS,WSNPCurvatureScalarsSpinCoeff,NTetrad

RS,WStablePhi11=0,Phi12=z2+Ix24ytx2z2,Phi01=z2+Ix24ytx2z2,Phi02=I2zxy2,Phi00=12xt2z,Lambda=0,Phi22=12xt2z,tablePsi4=y2+It22xt2zy2,Psi1=z2+Ix24ytx2z2,Psi2=0,Psi3=z2+Ix24ytx2z2,Psi0=y2+It22xt2zy2

(2.5)
S > 

EqaNPRicciIdentitiesSpinCoeff,RS,WS,a,NTetrad

Eqa14xt2z+14t2z214y2x2+I4zxy2=14t2z2+14xt2z18y2x2+2I22zy24xy4xy

(2.6)
S > 

simplifylhsEqa1rhsEqa1

0

(2.7)

See Also

Physics[Ricci], DifferentialGeometry, Tensor, NPBianchiIdentities, NPDirectionalDerivatives, NPSpinCoefficients, NPCurvatureScalars, Physics[Riemann]