Tensor[NPSpinCoefficients] - find the Newman-Penrose spin coefficients
Calling Sequences
NPSpinCoefficients(NTetrad, output)
NPSpinCoefficients(Fr, output)
Parameters
NTetrad - a list of 4 vectors defining a null tetrad
Fr - the name of an initialized anholonomic frame, created from a null tetrad
output - (optional) keyword argument output = "sequence"
Description
Examples
See Also
Let g be a metric with signature 1,−1,−1,−1 and (L, N, M, M‾) a null tetrad for g. The Newman-Penrose spin coefficients are the connection coefficients defined by the null tetrad. They are thus certain complex linear combinations of the Christoffel connection coefficients. The NP spin coefficients provide for a very compact and efficient formalism for connection and curvature computations in general relativity. See Newman and Penrose, Stewart.
The NPSpinCoefficients command returns a table with 12 entries "kappa", "rho", "sigma", "tau", "pi", "lambda", "mu", "nu", "alpha ", "beta ", " gamma ", "epsilon". These are the customary labels assigned to the spin coefficients. With the optional keyword argument output = "sequence", the spin coefficients are returned as a sequence of 12 Maple expressions.
Here are the formulas that are used to compute the NP spin coefficients. Let ΘL, ΘN,ΘM,ΘM‾ be the basis of 1-forms dual to the given null tetrad (L, N, M, M‾). With respect to this basis, the metric g becomes
g= 2 ΘL⊙ΘN−2 ΘM⊙ΘM‾ =ΘL⊗ΘN+ΘN⊗ΘL−ΘM⊗ΘM‾−ΘM‾⊗ΘM ,
where⊙is the symmetric tensor product. Let ∇X be the directional covariant derivative operator (in the direction of a vector X) defined by the Christoffel connection for the metric g. If ω is a 1-form, then ∇Xω is a 1-form which can be evaluated on a vector Y to give the scalar ∇XωY. In terms of this notation, the spin coefficients are:
k = ∇LΘNM
ρ=∇M‾ ΘNM
σ=∇MΘNM
τ=−∇NΘNM
π=−∇NΘLM‾
λ=−∇NΘLM‾
μ=−∇NΘMM‾
ν=∇NΘNM‾
α=12∇M‾ΘNN+12∇M‾ΘM‾M‾
β=12∇MΘNN+12∇MΘM‾M‾
γ=12∇NΘNN+12∇NΘM‾M‾
ε=12∇LΘNN+12∇LΘM‾M‾
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPSpinCoefficients(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NPSpinCoefficients.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Define a manifold S with coordinates t,x,y,z.
DGsetup⁡t,x,y,z,S
frame name: S
Define a metric g.
g≔evalDG⁡x2⁢dt&tdt−y2⁢dx&tdx−z2⁢dy&tdy−t2⁢dz&tdz
g≔x2⁢dt⁢dt−y2⁢dx⁢dx−z2⁢dy⁢dy−t2⁢dz⁢dz
Define an orthonormal tetrad OTetrad for the metric g. Use GRQuery to check that OTetrad is indeed an orthonormal tetrad.
OTetrad≔1x⁢D_t,1y⁢D_x,1z⁢D_y,1t⁢D_z
OTetrad≔D_tx,D_xy,D_yz,D_zt
GRQuery⁡OTetrad,g,OrthonormalTetrad
true
Construct a null tetrad NTetrad from the orthonormal tetrad OTetrad.
NTetrad≔NullTetrad⁡OTetrad
NTetrad≔22⁢x⁢D_t+22⁢t⁢D_z,22⁢x⁢D_t−22⁢t⁢D_z,22⁢y⁢D_x+I2⁢2z⁢D_y,22⁢y⁢D_x−I2⁢2z⁢D_y
Calculate the NP spin coefficients defined by the null tetrad NTetrad.
SpinCoeff≔NPSpinCoefficients⁡NTetrad
SpinCoeff≔table⁡epsilon=24⁢t⁢x,tau=−24⁢x⁢y,kappa=−24⁢x⁢y,alpha=I4⁢2z⁢y,beta=I4⁢2z⁢y,mu=−24⁢t⁢z,rho=−24⁢t⁢z,lambda=24⁢t⁢z,gamma=−24⁢t⁢x,sigma=24⁢t⁢z,nu=24⁢x⁢y,pi=24⁢x⁢y
The individual spin coefficients can be extracted from the table SpinCoeff.
SpinCoefftau
−24⁢x⁢y
Example 2.
With the keyword argument output = "sequence", the command NPSpinCoefficients will return the spin coefficients as a sequence. (Note that gamma is protected by Maple.)
κ,ρ,σ,τ,pi,λ,μ,ν,α,β,gam,ε≔NPSpinCoefficients⁡NTetrad,output=Sequence
κ,ρ,σ,τ,π,λ,μ,ν,α,β,gam,ϵ≔−24⁢x⁢y,−24⁢t⁢z,24⁢t⁢z,−24⁢x⁢y,24⁢x⁢y,24⁢t⁢z,−24⁢t⁢z,24⁢x⁢y,I4⁢2z⁢y,I4⁢2z⁢y,−24⁢t⁢x,24⁢t⁢x
Example 3.
We check the results from Example 2 against the definitions of the spin-coefficients. First define the null tetrad.
L,N,M,barM≔op⁡NTetrad
L,N,M,barM≔22⁢x⁢D_t+22⁢t⁢D_z,22⁢x⁢D_t−22⁢t⁢D_z,22⁢y⁢D_x+I2⁢2z⁢D_y,22⁢y⁢D_x−I2⁢2z⁢D_y
Define the dual basis.
Theta_L,Theta_N,Theta_M,Theta_barM≔op⁡DualBasis⁡NTetrad
Theta_L,Theta_N,Theta_M,Theta_barM≔2⁢x2⁢dt+2⁢t2⁢dz,2⁢x2⁢dt−2⁢t2⁢dz,2⁢y2⁢dx−I2⁢2⁢z⁢dy,2⁢y2⁢dx+I2⁢2⁢z⁢dy
Calculate the Christoffel connection.
C≔Christoffel⁡g
C≔1x⁢D_t⁢dt⁢dx+1x⁢D_t⁢dx⁢dt+tx2⁢D_t⁢dz⁢dz+xy2⁢D_x⁢dt⁢dt+1y⁢D_x⁢dx⁢dy+1y⁢D_x⁢dy⁢dx−yz2⁢D_y⁢dx⁢dx+1z⁢D_y⁢dy⁢dz+1z⁢D_y⁢dz⁢dy+1t⁢D_z⁢dt⁢dz−zt2⁢D_z⁢dy⁢dy+1t⁢D_z⁢dz⁢dt
1. k = ∇LΘNM
κ=Hook⁡M,DirectionalCovariantDerivative⁡L,Theta_N,C
−24⁢x⁢y=−24⁢x⁢y
2. ρ=∇M‾ ΘNM
ρ=Hook⁡M,DirectionalCovariantDerivative⁡barM,Theta_N,C
−24⁢t⁢z=−24⁢t⁢z
3. σ=∇MΘNM
σ=Hook⁡M,DirectionalCovariantDerivative⁡M,Theta_N,C
24⁢t⁢z=24⁢t⁢z
4. τ=−∇NΘNM
τ=Hook⁡M,DirectionalCovariantDerivative⁡N,Theta_N,C
5. π=−∇NΘLM‾
pi=−Hook⁡barM,DirectionalCovariantDerivative⁡L,Theta_L,C
24⁢x⁢y=24⁢x⁢y
6. λ=−∇NΘLM‾
λ=−Hook⁡barM,DirectionalCovariantDerivative⁡barM,Theta_L,C
7. μ=−∇NΘMM‾
μ=−Hook⁡barM,DirectionalCovariantDerivative⁡M,Theta_L,C
8. ν=∇NΘNM‾
ν=−Hook⁡barM,DirectionalCovariantDerivative⁡N,Theta_L,C
9. α=12∇M‾ΘNN+12∇M‾ΘM‾M‾
α=12⁢Hook⁡N,DirectionalCovariantDerivative⁡barM,Theta_N,C+12⁢Hook⁡barM,DirectionalCovariantDerivative⁡barM,Theta_barM,C
I4⁢2z⁢y=I4⁢2z⁢y
10. β=12∇MΘNN+12∇MΘM‾M‾
β=12⁢Hook⁡N,DirectionalCovariantDerivative⁡M,Theta_N,C+12⁢Hook⁡barM,DirectionalCovariantDerivative⁡barM,Theta_barM,C
11. γ=12∇NΘNN+12∇NΘM‾M‾
gam=12⁢Hook⁡N,DirectionalCovariantDerivative⁡N,Theta_N,C+12⁢Hook⁡barM,DirectionalCovariantDerivative⁡N,Theta_barM,C
−24⁢t⁢x=−24⁢t⁢x
12. ε=12∇LΘNN+12∇LΘM‾M‾
ε=12⁢Hook⁡N,DirectionalCovariantDerivative⁡L,Theta_N,C+12⁢Hook⁡barM,DirectionalCovariantDerivative⁡L,Theta_barM,C
24⁢t⁢x=24⁢t⁢x
Example 4
When working with the NP formalism, it is usually advantageous to work with the anholonomic frame defined by the null tetrad. To create anholonomic frames in DifferentialGeometry, see FrameData.
FD≔FrameData⁡NTetrad,NP
FD≔E1,E2=2⁢E12⁢t⁢x−2⁢E22⁢t⁢x,E1,E3=2⁢E14⁢x⁢y+2⁢E24⁢x⁢y−2⁢E34⁢t⁢z+2⁢E44⁢t⁢z,E1,E4=2⁢E14⁢x⁢y+2⁢E24⁢x⁢y+2⁢E34⁢t⁢z−2⁢E44⁢t⁢z,E2,E3=2⁢E14⁢x⁢y+2⁢E24⁢x⁢y+2⁢E34⁢t⁢z−2⁢E44⁢t⁢z,E2,E4=2⁢E14⁢x⁢y+2⁢E24⁢x⁢y−2⁢E34⁢t⁢z+2⁢E44⁢t⁢z,E3,E4=−I⁢2⁢E32⁢y⁢z−I⁢2⁢E42⁢y⁢z
DGsetup⁡FD
frame name: NP
We can now calculate the spin coefficients for the null tetrad with the second calling sequence.
NPSpinCoefficients⁡NP
table⁡epsilon=24⁢t⁢x,tau=−24⁢x⁢y,kappa=−24⁢x⁢y,alpha=I4⁢2z⁢y,beta=I4⁢2z⁢y,mu=−24⁢t⁢z,rho=−24⁢t⁢z,lambda=24⁢t⁢z,gamma=−24⁢t⁢x,sigma=24⁢t⁢z,nu=24⁢x⁢y,pi=24⁢x⁢y
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, DirectionalCovariantDerivative, DualBasis, FrameData, GRQuery, NullTetrad
Download Help Document