Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor
Calling Sequences
NullVector(σ, φ)
NullVector( σ, φ, ψ)
Parameters
σ - a spin-tensor defining a solder form on a 4-dimensional spacetime
φ, ψ - rank 1 spinors
Description
Examples
See Also
Let g be a metric on a 4-dimensional manifold with signature1, −1, −1, −1. A null vector X satisfies gX, X = 0.
Let σ be a solder form for the metric g, that is, σ is a rank 3 spin-tensor such that gij = σi AA'σjAA' . The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.
With two arguments, the NullVector command returns the real vector with components Xi = σiAA'φA φ‾A'
• With three arguments, the NullVector command returns the (complex) vector with components Xi = σiAA'φAψA' .
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create the spinor bundle M with spacetime coordinates t, x, y, z and fiber coordinates z1, z2, w1,w2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,M
frame name: M
Define a spacetime metric g on M with signature 1, −1, −1, −1.
g≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal tetrad F on M with respect to the metric g. Use the command SolderForm to create a solder form σ.
F≔D_t,D_x,D_y,D_z
F:=D_t,D_x,D_y,D_z
σ≔SolderForm⁡F
σ:=12⁢2⁢dt⁢D_z1⁢D_w1+12⁢2⁢dt⁢D_z2⁢D_w2+12⁢2⁢dx⁢D_z1⁢D_w2+12⁢2⁢dx⁢D_z2⁢D_w1−12⁢I⁢2⁢dy⁢D_z1⁢D_w2+12⁢I⁢2⁢dy⁢D_z2⁢D_w1+12⁢2⁢dz⁢D_z1⁢D_w1−12⁢2⁢dz⁢D_z2⁢D_w2
Define rank 1 spinors φ1, φ2 and φ3.
φ1≔D_z1
φ1:=D_z1
φ2≔evalDG⁡a⁢D_z1+b⁢D_z2
φ2:=a⁢D_z1+b⁢D_z2
φ3≔D_w2
φ3:=D_w2
Use the command NullVector to find the corrresponding null vectors X, Y, Z.
X≔NullVector⁡σ,φ1
X:=12⁢2⁢D_t+12⁢2⁢D_z
Y≔NullVector⁡σ,φ2assuminga::real,b::real
Y:=12⁢2⁢b2+12⁢2⁢a2⁢D_t+2⁢a⁢b⁢D_x+−12⁢2⁢b2+12⁢2⁢a2⁢D_z
Z≔NullVector⁡σ,φ1,φ3
Z:=12⁢2⁢D_x+12⁢I⁢2⁢D_y
We can use the command TensorInnerProduct to check that the vectors X, Y, Z are indeed null vectors.
TensorInnerProduct⁡g,X,X
0
TensorInnerProduct⁡g,Y,Y
TensorInnerProduct⁡g,Z,Z
DifferentialGeometry, Tensor, NullTetrad, PrincipalNullDirections, SolderForm, TensorInnerProduct
Download Help Document