ProjectiveCurvatureTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : ProjectiveCurvatureTensor

Tensor[ProjectiveCurvatureTensor] - calculate the Weyl projective curvature tensor of a connection on the tangent bundle

 

Calling Sequences

     ProjectiveCurvature(g)

     ProjectiveCurvature(C)

     ProjectiveCurvature(R)

Parameters

     g       - the metric tensor on the tangent bundle of a manifold

     C       - a connection on the tangent bundle of a manifold

     R       - the curvature tensor of a connection on the tangent bundle of a manifold

 

Description

Examples

Description

• 

Let C be a connection on the tangent bundle of a manifold M of dimensionm>1. Let the curvature tensor of C be R and the Ricci tensor of C be Q. The Weyl projective curvature of C is the tensor P of type 13 given by

P abcd=R abcd3m+1(δadQbcδ[adQbc])  1m1δbdQacδcdQab.

• 

With the first calling sequence the projective curvature tensor of the Christoffel connection of the metric g is computed. With the second calling sequence, the projective curvature tensor is computed directly from the given connection.  With the third calling sequence, the projective curvature tensor is computed directly from the given curvature tensor.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ProjectiveCurvature(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-ProjectiveCurvature.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

Compute the projective curvature of a metric.

 

DGsetupx,y,z,P

frame name: P

(2.1)
P > 

gevalDGexpλxdx&tdx+dy&tdy+dz&tdz

g:=ⅇλxdxdx+ⅇλxdydy+ⅇλxdzdz

(2.2)
P > 

ProjectiveCurvatureTensorg

18λ2D_xdydxdy18λ2D_xdydydx+18λ2D_xdzdxdz18λ2D_xdzdzdx18λ2D_ydzdydz+18λ2D_ydzdzdy+18λ2D_zdydydz18λ2D_zdydzdy

(2.3)

 

Example 2.

Compute the projective curvature of a connection.

 

DGsetupx,y,z,u,P

frame name: P

(2.4)
P > 

CConnectionwyD_x&tdx&tdx+fuD_y&tdx&sdz

C:=wyD_xdxdx+12fuD_ydxdz+12fuD_ydzdx

(2.5)
P > 

ProjectiveCurvatureTensorC

815ⅆⅆywyD_xdxdxdy+815ⅆⅆywyD_xdxdydx12fuwyD_ydxdxdz+12fuwyD_ydxdzdx12ⅆⅆufuD_ydxdzdu+12ⅆⅆufuD_ydxdudz+215ⅆⅆywyD_ydydxdy215ⅆⅆywyD_ydydydx12ⅆⅆufuD_ydzdxdu+12ⅆⅆufuD_ydzdudx415ⅆⅆywyD_zdxdydz+415ⅆⅆywyD_zdxdzdy115ⅆⅆywyD_zdydxdz+115ⅆⅆywyD_zdydzdx+15ⅆⅆywyD_zdzdxdy15ⅆⅆywyD_zdzdydx415ⅆⅆywyD_udxdydu+415ⅆⅆywyD_udxdudy115ⅆⅆywyD_udydxdu+115ⅆⅆywyD_udydudx+15ⅆⅆywyD_ududxdy15ⅆⅆywyD_ududydx

(2.6)

 

Example 3.

Compute the projective curvature from a given curvature tensor.

 

DGsetupt,x,y,z,M

frame name: M

(2.7)
M > 

gevalDGdt&tdt+expatdx&tdx+dy&tdy+dz&tdz

g:=dtdt+ⅇatdxdx+ⅇatdydy+ⅇatdzdz

(2.8)
M > 

RCurvatureTensorg:

M > 

ProjectiveCurvatureTensorR

13ⅆⅆtⅆⅆtatⅇatD_tdxdtdx13ⅆⅆtⅆⅆtatⅇatD_tdxdxdt+13ⅆⅆtⅆⅆtatⅇatD_tdydtdy13ⅆⅆtⅆⅆtatⅇatD_tdydydt+13ⅆⅆtⅆⅆtatⅇatD_tdzdtdz13ⅆⅆtⅆⅆtatⅇatD_tdzdzdt16ⅆⅆtⅆⅆtatⅇatD_xdydxdy+16ⅆⅆtⅆⅆtatⅇatD_xdydydx16ⅆⅆtⅆⅆtatⅇatD_xdzdxdz+16ⅆⅆtⅆⅆtatⅇatD_xdzdzdx+16ⅆⅆtⅆⅆtatⅇatD_ydxdxdy16ⅆⅆtⅆⅆtatⅇatD_ydxdydx16ⅆⅆtⅆⅆtatⅇatD_ydzdydz+16ⅆⅆtⅆⅆtatⅇatD_ydzdzdy+16ⅆⅆtⅆⅆtatⅇatD_zdxdxdz16ⅆⅆtⅆⅆtatⅇatD_zdxdzdx+16ⅆⅆtⅆⅆtatⅇatD_zdydydz16ⅆⅆtⅆⅆtatⅇatD_zdydzdy

(2.9)

 

See Also

DifferentialGeometry

CurvatureTensor

RicciTensor