Tensor[RainichElectromagneticField] - from a given metric satisfying the Rainich conditions, calculate an electromagnetic field which solves the Einstein-Maxwell equations
Calling Sequences
RainichElectromagneticField(g, α)
RainichElectromagneticField(g, R, CR, α, option)
Parameters
g - a metric tensor on a 4-dimensional manifold
R - the Ricci tensor of g
CR - a rank 3 tensor, the covariant derivative of the Ricci tensor
alpha - (optional) 1-form
Description
Examples
Let g be metric on a 4-dimensional manifold. If g satisfies the Rainich conditions, then there exists a non-null electromagnetic field F (a non-null 2-form satisfying the source-free Maxwell equations) such that the Einstein equations Gii= Tij hold. Here Gii =Rij −12gijR is the Einstein tensor and Tij = ghkFihFjk −14 gij FhkFhk is the electromagnetic energy-momentum tensor. Note that the Rainich conditions require that the Ricci tensor is non-null, that is, N= RijRij≠ 0.
The electromagnetic field F is constructed as follows. First, define
Eijhk =12 gih Rjk − gjhRik − gikRjh + gjkRih and Gijhk = Eijhk − 1N1/2 Eijrs Ehk rs
Define a rank 2 skew-symmetric tensor fij by fijfhk= Gijhk . For example, if ρ = G1212>0 , then fij = 1/ρ1/2 Gij12 . Let fij* = 1/2 ϵijhk fhk . Let α = αi dxi be the 1-form defined by αi = ϵijhk Rm jRmk;h /N. Find a function θ such that dθ = α The Rainich electromagnetic field is Fij= sinθ fij+ cosθ fij*.Note that the electromagnetic field constructed in this way is never unique because θ is not uniquely determined. The electromagnetic field may have complex values if the metric is not of Lorentz signature.
The command RainichElectromagneticField returns the electromagnetic 2-form F.
with(DifferentialGeometry): with(Tensor):
Example 1.
We define a space-time metric g and check that the Rainich conditions hold. Then we find the Rainich electromagnetic field.
DGsetup([t, x, y, z], M):
g := evalDG(4/3*t^2* dx &t dx + t*(exp(-2*x)* dy &t dy + exp(2*x)*dz &t dz) - dt &t dt);
g:=−dt⁢dt+43⁢t2⁢dx⁢dx+t⁢ⅇ−2⁢x⁢dy⁢dy+t⁢ⅇ2⁢x⁢dz⁢dz
1. First calling sequences.
RainichConditions(g);
true
F := RainichElectromagneticField(g);
F:=2⁢cos⁡_C1⁢csgn⁡1t2+1⁢dt⁢⋀⁢dx6⁢csgn⁡1t2+6+sin⁡_C1⁢3⁢csgn⁡1t2⁢csgn⁡1t2+1⁢dy⁢⋀⁢dz6⁢csgn⁡1t2+6
We can simplify this output with the assuming command.
simplify(F) assuming t::real;
23⁢cos⁡_C1⁢3⁢dt⁢⋀⁢dx+sin⁡_C1⁢dy⁢⋀⁢dz
Note that because the first calling sequence for either RainichCondition or RainichElectromagneticField requires coordinate differentiation (to calculate the Ricci tensor and its covariant derivative), assumptions such as assuming t::real cannot be applied directly to these commands. For this reason and for efficiency, it is better to use the second calling sequences.
2. Second calling sequences. First calculate the Ricci tensor and its covariant derivative.
R := RicciTensor(g);
R:=12⁢dt⁢dtt2−23⁢dx⁢dx+12⁢ⅇ−2⁢x⁢dy⁢dyt+12⁢ⅇ2⁢x⁢dz⁢dzt
C := Christoffel(g);
C:=dt⁢D_x⁢dxt+12⁢dt⁢D_y⁢dyt+12⁢dt⁢D_z⁢dzt+43⁢t⁢dx⁢D_t⁢dx+dx⁢D_x⁢dtt−dx⁢D_y⁢dy+dx⁢D_z⁢dz+12⁢ⅇ−2⁢x⁢dy⁢D_t⁢dy+34⁢ⅇ−2⁢x⁢dy⁢D_x⁢dyt+12⁢dy⁢D_y⁢dtt−dy⁢D_y⁢dx+12⁢ⅇ2⁢x⁢dz⁢D_t⁢dz−34⁢ⅇ2⁢x⁢dz⁢D_x⁢dzt+12⁢dz⁢D_z⁢dtt+dz⁢D_z⁢dx
CR := CovariantDerivative(R, C);
CR:=−dt⁢dt⁢dtt3−12⁢ⅇ−2⁢x⁢dt⁢dy⁢dyt2−12⁢ⅇ2⁢x⁢dt⁢dz⁢dzt2+43⁢dx⁢dx⁢dtt+ⅇ−2⁢x⁢dx⁢dy⁢dyt−ⅇ2⁢x⁢dx⁢dz⁢dzt−12⁢ⅇ−2⁢x⁢dy⁢dt⁢dyt2+ⅇ−2⁢x⁢dy⁢dx⁢dyt−ⅇ−2⁢x⁢dy⁢dy⁢dtt2−12⁢ⅇ2⁢x⁢dz⁢dt⁢dzt2−ⅇ2⁢x⁢dz⁢dx⁢dzt−ⅇ2⁢x⁢dz⁢dz⁢dtt2
RainichConditions(g, R, CR, alpha);
Here is the Rainich electromagnetic field tensor. The constant _C1 reflects the non-uniqueness of theta.
F:= RainichElectromagneticField(g, R, CR, alpha) assuming t::real;
F:=23⁢cos⁡_C1⁢3⁢dt⁢⋀⁢dx+sin⁡_C1⁢dy⁢⋀⁢dz
We check that the Einstein equations are satisfied (See EinsteinTensor, EnergyMomentumTensor).
T := EnergyMomentumTensor("Electromagnetic", g, F);
T:=12⁢D_t⁢D_tt2−38⁢D_x⁢D_xt4+12⁢ⅇ2⁢x⁢D_y⁢D_yt3+12⁢ⅇ−2⁢x⁢D_z⁢D_zt3
E := EinsteinTensor(g);
E:=12⁢D_t⁢D_tt2−38⁢D_x⁢D_xt4+12⁢ⅇ2⁢x⁢D_y⁢D_yt3+12⁢ⅇ−2⁢x⁢D_z⁢D_zt3
E &minus T;
0⁢D_t⁢D_t
We check that the Maxwell equations (see MatterFieldEquations) are satisfied.
MatterFieldEquations("Electromagnetic", g, F);
0⁢D_t,0⁢dt⁢⋀⁢dx⁢⋀⁢dy
Example 2.
We present an example where the 1-form α is non-zero.
DGsetup([t, y, phi, v], M2);
frame name: M2
g2 := evalDG(t^(-2)*(dt &t dt + dy &t dy) + t^2 * dphi &t dphi - (dv + 2*y*dphi) &t (dv + 2*y*dphi));
g2:=dt⁢dtt2+dy⁢dyt2−4⁢y2−t2⁢dphi⁢dphi−2⁢y⁢dphi⁢dv−2⁢y⁢dv⁢dphi−dv⁢dv
R2 := RicciTensor(g2);
R2:=−2⁢dt⁢dtt2+2⁢dy⁢dyt2+8⁢y2+2⁢t2⁢dphi⁢dphi+4⁢y⁢dphi⁢dv+4⁢y⁢dv⁢dphi+2⁢dv⁢dv
C2 := Christoffel(g2);
C2:=−dt⁢D_t⁢dtt−dt⁢D_y⁢dyt+dt⁢D_phi⁢dphit−2⁢y⁢dt⁢D_v⁢dphit+dy⁢D_t⁢dyt−dy⁢D_y⁢dtt−2⁢y⁢dy⁢D_phi⁢dphit2−dy⁢D_phi⁢dvt2+4⁢y2+t2⁢dy⁢D_v⁢dphit2+2⁢y⁢dy⁢D_v⁢dvt2−t3⁢dphi⁢D_t⁢dphi+4⁢t2⁢y⁢dphi⁢D_y⁢dphi+t2⁢dphi⁢D_y⁢dv+dphi⁢D_phi⁢dtt−2⁢y⁢dphi⁢D_phi⁢dyt2−2⁢y⁢dphi⁢D_v⁢dtt+4⁢y2+t2⁢dphi⁢D_v⁢dyt2+t2⁢dv⁢D_y⁢dphi−dv⁢D_phi⁢dyt2+2⁢y⁢dv⁢D_v⁢dyt2
CR2 := CovariantDerivative(R2, C2);
CR2:=4⁢dt⁢dy⁢dyt3−4⁢t⁢dt⁢dphi⁢dphi+4⁢dy⁢dt⁢dyt3−8⁢y⁢dy⁢dphi⁢dphi−4⁢dy⁢dv⁢dphi−4⁢t⁢dphi⁢dt⁢dphi−8⁢y⁢dphi⁢dy⁢dphi+16⁢y⁢dphi⁢dphi⁢dy+4⁢dphi⁢dv⁢dy−4⁢dv⁢dy⁢dphi+4⁢dv⁢dphi⁢dy
RainichConditions(g2, R2, CR2, alpha2) assuming t > 0;
alpha2;
2⁢dtt
F2 := RainichElectromagneticField(g2, R2, CR2, alpha2):
F2 := simplify(F2) assuming t > 0, y > 0;
F2:=4⁢cos⁡2⁢ln⁡t+_C1⁢y⁢dt⁢⋀⁢dphit+2⁢cos⁡2⁢ln⁡t+_C1⁢dt⁢⋀⁢dvt+2⁢sin⁡2⁢ln⁡t+_C1⁢dy⁢⋀⁢dphi
T2 := EnergyMomentumTensor("Electromagnetic", g2, F2);
T2:=−2⁢t2⁢D_t⁢D_t+2⁢t2⁢D_y⁢D_y+2⁢D_phi⁢D_phit2−4⁢y⁢D_phi⁢D_vt2−4⁢y⁢D_v⁢D_phit2+2⁢4⁢y2+t2⁢D_v⁢D_vt2
E2 := EinsteinTensor(g2);
E2:=−2⁢t2⁢D_t⁢D_t+2⁢t2⁢D_y⁢D_y+2⁢D_phi⁢D_phit2−4⁢y⁢D_phi⁢D_vt2−4⁢y⁢D_v⁢D_phit2+2⁢4⁢y2+t2⁢D_v⁢D_vt2
E2 &minus T2;
MatterFieldEquations("Electromagnetic", g2, F2);
0⁢D_t,0⁢dt⁢⋀⁢dy⁢⋀⁢dphi
See Also
DifferentialGeometry
CovariantDerivative
DGinfo
EinsteinTensor
EnergyMomentumTensor
MatterFieldEquations
RainichConditions
RicciTensor
Tensor
Download Help Document