RainichElectromagneticField - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : RainichElectromagneticField

Tensor[RainichElectromagneticField] - from a given metric satisfying the Rainich conditions, calculate an electromagnetic field which solves the Einstein-Maxwell equations

Calling Sequences

     RainichElectromagneticField(g, α)

     RainichElectromagneticField(g, R, CR, α, option)

Parameters

     g       - a metric tensor on a 4-dimensional manifold

     R       - the Ricci tensor of g

     CR      -  a rank 3 tensor, the covariant derivative of the Ricci tensor

     alpha   - (optional) 1-form

   

 

Description

 Examples

Description

• 

Let g be metric on a 4-dimensional manifold. If g satisfies the Rainich conditions, then there exists a non-null electromagnetic field F (a non-null 2-form satisfying the source-free Maxwell equations) such that the Einstein equations Gii= Tij hold. Here Gii =Rij 12gijR is the Einstein tensor and Tij = ghkFihFjk 14 gij FhkFhk  is the electromagnetic energy-momentum tensor. Note that the Rainich conditions require that the Ricci tensor is non-null, that is, N= RijRij 0. 

• 

The electromagnetic field F is constructed as follows. First, define

Eijhk =12 gih Rjk   gjhRik  gikRjh + gjkRih  and  Gijhk = Eijhk  1N1/2 Eijrs Ehk    rs 

Define a rank 2 skew-symmetric tensor fij by fijfhk= Gijhk . For example,  if ρ = G1212>0 , then fij = 1/ρ1/2 Gij12 . Let  fij* = 1/2 ϵijhk fhk .  Let α = αi dxi be the 1-form defined by αi = ϵijhk Rm jRmk;h /N.  Find a function θ such that dθ = α  The Rainich electromagnetic field is Fij= sinθ fij+ cosθ fij*.Note that the electromagnetic field constructed in this way is never unique because θ is not uniquely determined. The electromagnetic field may have complex values if the metric is not of Lorentz signature.

• 

The command RainichElectromagneticField returns the electromagnetic 2-form F.

 Examples

 

with(DifferentialGeometry): with(Tensor):

 

Example 1.

We define a space-time metric g and check that the Rainich conditions hold. Then we find the Rainich electromagnetic field.

 

M > 

DGsetup([t, x, y, z], M):

M > 

g := evalDG(4/3*t^2* dx &t dx + t*(exp(-2*x)* dy &t dy + exp(2*x)*dz &t dz) - dt &t dt);

g:=dtdt+43t2dxdx+tⅇ2xdydy+tⅇ2xdzdz

(2.1)

 

1. First calling sequences.

M > 

RainichConditions(g);

true

(2.2)
M > 

F := RainichElectromagneticField(g);

F:=2cos_C1csgn1t2+1dtdx6csgn1t2+6+sin_C13csgn1t2csgn1t2+1dydz6csgn1t2+6

(2.3)

 

We can simplify this output with the assuming command.

M > 

simplify(F) assuming t::real;

23cos_C13dtdx+sin_C1dydz

(2.4)

Note that because the first calling sequence for either RainichCondition or RainichElectromagneticField requires coordinate differentiation (to calculate the Ricci tensor and its covariant derivative), assumptions such as assuming t::real cannot be applied directly to these commands. For this reason and for efficiency, it is better to use the second calling sequences.

 

2. Second calling sequences. First calculate the Ricci tensor and its covariant derivative.

R := RicciTensor(g);

R:=12dtdtt223dxdx+12ⅇ2xdydyt+12ⅇ2xdzdzt

(2.5)
M > 

C := Christoffel(g);

C:=dtD_xdxt+12dtD_ydyt+12dtD_zdzt+43tdxD_tdx+dxD_xdttdxD_ydy+dxD_zdz+12ⅇ2xdyD_tdy+34ⅇ2xdyD_xdyt+12dyD_ydttdyD_ydx+12ⅇ2xdzD_tdz34ⅇ2xdzD_xdzt+12dzD_zdtt+dzD_zdx

(2.6)
M > 

CR := CovariantDerivative(R, C);

CR:=dtdtdtt312ⅇ2xdtdydyt212ⅇ2xdtdzdzt2+43dxdxdtt+ⅇ2xdxdydytⅇ2xdxdzdzt12ⅇ2xdydtdyt2+ⅇ2xdydxdytⅇ2xdydydtt212ⅇ2xdzdtdzt2ⅇ2xdzdxdztⅇ2xdzdzdtt2

(2.7)
M > 

RainichConditions(g, R, CR, alpha);

true

(2.8)

 

Here is the Rainich electromagnetic field tensor. The constant _C1 reflects the non-uniqueness of theta.

M > 

F:= RainichElectromagneticField(g, R, CR, alpha) assuming t::real;

F:=23cos_C13dtdx+sin_C1dydz

(2.9)

 

We check that the Einstein equations are satisfied (See EinsteinTensor, EnergyMomentumTensor).

M > 

T := EnergyMomentumTensor("Electromagnetic", g, F);

T:=12D_tD_tt238D_xD_xt4+12ⅇ2xD_yD_yt3+12ⅇ2xD_zD_zt3

(2.10)
M > 

E := EinsteinTensor(g);

E:=12D_tD_tt238D_xD_xt4+12ⅇ2xD_yD_yt3+12ⅇ2xD_zD_zt3

(2.11)
M > 

E &minus T;

0D_tD_t

(2.12)

 

We check that the Maxwell equations (see MatterFieldEquations)  are satisfied.

M > 

MatterFieldEquations("Electromagnetic", g, F);

0D_t,0dtdxdy

(2.13)

 

Example 2.

We present an example where the 1-form α is non-zero.

M > 

DGsetup([t, y, phi, v], M2);

frame name: M2

(2.14)
M2 > 

g2 := evalDG(t^(-2)*(dt &t dt + dy &t dy) + t^2 * dphi &t dphi - (dv + 2*y*dphi) &t (dv + 2*y*dphi));

g2:=dtdtt2+dydyt24y2t2dphidphi2ydphidv2ydvdphidvdv

(2.15)

R2 := RicciTensor(g2);

R2:=2dtdtt2+2dydyt2+8y2+2t2dphidphi+4ydphidv+4ydvdphi+2dvdv

(2.16)
M > 

C2 := Christoffel(g2);

C2:=dtD_tdttdtD_ydyt+dtD_phidphit2ydtD_vdphit+dyD_tdytdyD_ydtt2ydyD_phidphit2dyD_phidvt2+4y2+t2dyD_vdphit2+2ydyD_vdvt2t3dphiD_tdphi+4t2ydphiD_ydphi+t2dphiD_ydv+dphiD_phidtt2ydphiD_phidyt22ydphiD_vdtt+4y2+t2dphiD_vdyt2+t2dvD_ydphidvD_phidyt2+2ydvD_vdyt2

(2.17)
M > 

CR2 := CovariantDerivative(R2, C2);

CR2:=4dtdydyt34tdtdphidphi+4dydtdyt38ydydphidphi4dydvdphi4tdphidtdphi8ydphidydphi+16ydphidphidy+4dphidvdy4dvdydphi+4dvdphidy

(2.18)
M > 

RainichConditions(g2, R2, CR2, alpha2) assuming t > 0;

true

(2.19)
M > 

alpha2;

2dtt

(2.20)
M2 > 

F2 := RainichElectromagneticField(g2, R2, CR2, alpha2):

M2 > 

F2 := simplify(F2) assuming t > 0, y > 0;

F2:=4cos2lnt+_C1ydtdphit+2cos2lnt+_C1dtdvt+2sin2lnt+_C1dydphi

(2.21)

 

We check that the Einstein equations are satisfied (See EinsteinTensor, EnergyMomentumTensor).

M2 > 

T2 := EnergyMomentumTensor("Electromagnetic", g2, F2);

T2:=2t2D_tD_t+2t2D_yD_y+2D_phiD_phit24yD_phiD_vt24yD_vD_phit2+24y2+t2D_vD_vt2

(2.22)
M2 > 

E2 := EinsteinTensor(g2);

E2:=2t2D_tD_t+2t2D_yD_y+2D_phiD_phit24yD_phiD_vt24yD_vD_phit2+24y2+t2D_vD_vt2

(2.23)
M2 > 

E2 &minus T2;

0D_tD_t

(2.24)

 

We check that the Maxwell equations (see MatterFieldEquations)  are satisfied.

M2 > 

MatterFieldEquations("Electromagnetic", g2, F2);

0D_t,0dtdydphi

(2.25)

 

See Also

DifferentialGeometry

CovariantDerivative

DGinfo

EinsteinTensor

EnergyMomentumTensor

MatterFieldEquations

RainichConditions

RicciTensor

Tensor