Tensor[RicciScalar] - calculate the Ricci scalar for a metric
Calling Sequences
RicciScalar(g, R)
Parameters
g - a metric tensor on the tangent bundle of a manifold
R - (optional) the curvature tensor of the metric g calculated from the Christoffel symbol of g
Description
Examples
See Also
The Ricci scalar S for a metric g is the total contraction of the inverse of g with the Ricci tensor R of g. In components, S=gabRab.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciScalar(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RicciScalar.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 3 dimensional manifold M and define a metric g1 on M.
DGsetup⁡x,y,z,M
frame name: M
g1≔evalDG⁡a2k2+x2+y2+z22⁢dx&tdx+dy&tdy+dz&tdz
g1:=a2k2+x2+y2+z22⁢dx⁢dx+a2k2+x2+y2+z22⁢dy⁢dy+a2k2+x2+y2+z22⁢dz⁢dz
C1≔Christoffel⁡g1:
Calculate the curvature tensor.
R1≔CurvatureTensor⁡C1
R1:=4⁢k2k2+x2+y2+z22⁢D_x⁢dy⁢dx⁢dy−4⁢k2k2+x2+y2+z22⁢D_x⁢dy⁢dy⁢dx+4⁢k2k2+x2+y2+z22⁢D_x⁢dz⁢dx⁢dz−4⁢k2k2+x2+y2+z22⁢D_x⁢dz⁢dz⁢dx−4⁢k2k2+x2+y2+z22⁢D_y⁢dx⁢dx⁢dy+4⁢k2k2+x2+y2+z22⁢D_y⁢dx⁢dy⁢dx+4⁢k2k2+x2+y2+z22⁢D_y⁢dz⁢dy⁢dz−4⁢k2k2+x2+y2+z22⁢D_y⁢dz⁢dz⁢dy−4⁢k2k2+x2+y2+z22⁢D_z⁢dx⁢dx⁢dz+4⁢k2k2+x2+y2+z22⁢D_z⁢dx⁢dz⁢dx−4⁢k2k2+x2+y2+z22⁢D_z⁢dy⁢dy⁢dz+4⁢k2k2+x2+y2+z22⁢D_z⁢dy⁢dz⁢dy
Calculate the Ricci scalar.
S1≔RicciScalar⁡g1,R1
S1:=24⁢k2a2
Example 2.
We re-work the previous example in an orthonormal frame.
f≔ak2+x2+y2+z2
f:=ak2+x2+y2+z2
FR≔FrameData⁡f⁢dx,f⁢dy,f⁢dz,M1:
DGsetup⁡FR
frame name: M1
g3≔evalDG⁡Θ1&tΘ1+Θ2&tΘ2+Θ3&tΘ3
g3:=Θ1⁢Θ1+Θ2⁢Θ2+Θ3⁢Θ3
S3≔RicciScalar⁡g3
S3:=24⁢k2a2
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo, SectionalCurvature, RicciTensor, Physics[Ricci]
Download Help Document