RicciScalar - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[RicciScalar] - calculate the Ricci scalar for a metric

Calling Sequences

     RicciScalar(g, R)

Parameters

   g    - a metric tensor on the tangent bundle of a manifold

   R    - (optional) the curvature tensor of the metric g calculated from the Christoffel symbol of g

 

Description

Examples

See Also

Description

• 

The Ricci scalar S for a metric g is the total contraction of the inverse of g with the Ricci tensor R of g. In components, S=gabRab.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciScalar(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-RicciScalar.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 3 dimensional manifold M and define a metric g1 on M.

DGsetupx,y,z,M

frame name: M

(2.1)
M > 

g1evalDGa2k2+x2+y2+z22dx&tdx+dy&tdy+dz&tdz

g1:=a2k2+x2+y2+z22dxdx+a2k2+x2+y2+z22dydy+a2k2+x2+y2+z22dzdz

(2.2)
M > 

C1Christoffelg1:

 

Calculate the curvature tensor.

M > 

R1CurvatureTensorC1

R1:=4k2k2+x2+y2+z22D_xdydxdy4k2k2+x2+y2+z22D_xdydydx+4k2k2+x2+y2+z22D_xdzdxdz4k2k2+x2+y2+z22D_xdzdzdx4k2k2+x2+y2+z22D_ydxdxdy+4k2k2+x2+y2+z22D_ydxdydx+4k2k2+x2+y2+z22D_ydzdydz4k2k2+x2+y2+z22D_ydzdzdy4k2k2+x2+y2+z22D_zdxdxdz+4k2k2+x2+y2+z22D_zdxdzdx4k2k2+x2+y2+z22D_zdydydz+4k2k2+x2+y2+z22D_zdydzdy

(2.3)

 

Calculate the Ricci scalar.

M > 

S1RicciScalarg1,R1

S1:=24k2a2

(2.4)

 

Example 2.

We re-work the previous example in an orthonormal frame.

M > 

fak2+x2+y2+z2

f:=ak2+x2+y2+z2

(2.5)
M > 

FRFrameDatafdx,fdy,fdz,M1:

M > 

DGsetupFR

frame name: M1

(2.6)
M1 > 

g3evalDGΘ1&tΘ1+Θ2&tΘ2+Θ3&tΘ3

g3:=Θ1Θ1+Θ2Θ2+Θ3Θ3

(2.7)

 

Calculate the Ricci scalar.

M1 > 

S3RicciScalarg3

S3:=24k2a2

(2.8)

See Also

DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo, SectionalCurvature, RicciTensor, Physics[Ricci]