Tensor[SolderForm] - calculate the solder form from an orthonormal frame
Calling Sequences
SolderForm(OrthFr, indexlist)
Parameters
OrthFr - a list of 4 vectors defining an orthonormal frame for a metric g with signature 1, −1, −1,−1
indexlist - (optional) the keyword argument indextype = ind, where ind is a list of 3 index types "con" or "cov"
Description
Examples
See Also
The solder form σ is a rank 3 spin-tensor which defines an isomorphism between vectors and Hermitian rank 2 spinors. The first index type is a covariant tensor index, the second index type is a contravariant spinor index, and the third index is a contravariant barred (primed) spinor index. Denote the components of the solder form by σiAA'. (The components of the solder form are often referred to as the Infeld-van der Waerden symbols.) To define the solder form, first recall the definition of an orthonormal frame. Let M be a 4-dimensional manifold and let g be a metric on M with signature 1,−1,−1,−1. A tetrad of vectors X1,X2,X3,X4 is an orthonormal frame with respect to the metric if gXa,Xb=0 for a≠b, gX1,X1=1, g(Xa, Xa) = -1, a=2,3,4. The command DGGramSchmidt can be used to create an orthonormal frame. The command GRQuery or TensorInnerProduct can used to check that a list of vectors constitutes an orthonormal frame for a given metric. Recall also the definition of the 4 Pauli spin matrices P1,P2,P3,P4, given below in Example 1. The matrix elements of the Pa can be viewed as components of a Hermitian spinor, PaAA'. Let X1,X2,X3,X4 be an orthonormal frame with respect to a metric g and let ω1,ω2,ω3,ω4 be the dual co-frame (see DualBasis). Then the associated solder form is
σiAA'=22ωaPaAA' (sum on a).
The command SolderForm(OrthFr) calculates the solder form from the orthonormal frame OrthFr.
The keyword argument indexlist = ind allows the user to specify the index structure for the solder form. For example, withindexlist = ["con", "con", "con"], the contravariant form σiAA' is returned.
The solder form satisfies a number of important identities. These are given in Example 2.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SolderForm(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SolderForm.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a vector bundle over M with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2. It is understood that w1,w2 are complex conjugates of z1,z2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,M
frame name: M
Define a spacetime metric g on M with signature 1,−1,−1,−1.
g≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal frame on M with respect to the metric g. Verify the frame is orthonormal using the command GRQuery.
F≔D_t,D_x,D_y,D_z
F:=D_t,D_x,D_y,D_z
GRQuery⁡F,g,OrthonormalTetrad
true
Calculate the solder form σ from the frame F.
σ≔SolderForm⁡F
σ:=12⁢2⁢dt⁢D_z1⁢D_w1+12⁢2⁢dt⁢D_z2⁢D_w2+12⁢2⁢dx⁢D_z1⁢D_w2+12⁢2⁢dx⁢D_z2⁢D_w1−12⁢I⁢2⁢dy⁢D_z1⁢D_w2+12⁢I⁢2⁢dy⁢D_z2⁢D_w1+12⁢2⁢dz⁢D_z1⁢D_w1−12⁢2⁢dz⁢D_z2⁢D_w2
Let us obtain this result directly from the definition. First we define the Pauli matrices.
P1,P2,P3,P4≔Matrix⁡1,0,0,1,Matrix⁡0,1,1,0,Matrix⁡0,−I,I,0,Matrix⁡1,0,0,−1
Define the corresponding rank 2 Hermitian spinors.
S1≔evalDG⁡D_z1&tD_w1+D_z2&tD_w2
S1:=D_z1⁢D_w1+D_z2⁢D_w2
S2≔evalDG⁡D_z1&tD_w2+D_z2&tD_w1
S2:=D_z1⁢D_w2+D_z2⁢D_w1
S3≔evalDG⁡−I⁢D_z1&tD_w2+I⁢D_z2&tD_w1
S3:=−I⁢D_z1⁢D_w2+I⁢D_z2⁢D_w1
S4≔evalDG⁡D_z1&tD_w1−D_z2&tD_w2
S4:=D_z1⁢D_w1−D_z2⁢D_w2
Define the dual coframe to F.
ω≔dt,dx,dy,dz
ω:=dt,dx,dy,dz
σ0≔evalDG⁡sqrt⁡22⁢add⁡ωi&tensorSi,i=1..4
σ0:=12⁢2⁢dt⁢D_z1⁢D_w1+12⁢2⁢dt⁢D_z2⁢D_w2+12⁢2⁢dx⁢D_z1⁢D_w2+12⁢2⁢dx⁢D_z2⁢D_w1−12⁢I⁢2⁢dy⁢D_z1⁢D_w2+12⁢I⁢2⁢dy⁢D_z2⁢D_w1+12⁢2⁢dz⁢D_z1⁢D_w1−12⁢2⁢dz⁢D_z2⁢D_w2
This coincides with σ.
evalDG⁡σ−σ0
0
Example 2.
The solder form satisfies two important identities. The first identity involves contracting a pair of solder forms over their spinor indices:
σiAA'σjAA'=gij
The second identity involves contracting a pair of solder forms over their tensor indices:
σjAA'σjBB'=εABεA'B'.
Let us check the first identity using the solder form from Example 1. First calculate the covariant form of the solder form, using the orthonormal frame of the previous example.
sigmaCov≔SolderForm⁡F,indextype=cov,cov,cov
sigmaCov:=12⁢2⁢dt⁢dz1⁢dw1+12⁢2⁢dt⁢dz2⁢dw2−12⁢2⁢dx⁢dz1⁢dw2−12⁢2⁢dx⁢dz2⁢dw1−12⁢I⁢2⁢dy⁢dz1⁢dw2+12⁢I⁢2⁢dy⁢dz2⁢dw1−12⁢2⁢dz⁢dz1⁢dw1+12⁢2⁢dz⁢dz2⁢dw2
Note that this coincides with the result of using RaiseLowerSpinorIndices to lower the spinor indices of σ using the epsilon spinor.
sigmaCov&minusRaiseLowerSpinorIndices⁡σ,2,3
0⁢dt⁢dz1⁢dz1
The contraction of σ and sigmaCov over their spinor indices gives the metric g.
ContractIndices⁡σ,sigmaCov,2,2,3,3
dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
The same result can be obtained using SpinorInnerProduct.
SpinorInnerProduct⁡σ,σ
To check the second identity calculate the contravariant form of σ.
sigmaCon≔SolderForm⁡F,indextype=con,con,con
sigmaCon:=12⁢2⁢D_t⁢D_z1⁢D_w1+12⁢2⁢D_t⁢D_z2⁢D_w2−12⁢2⁢D_x⁢D_z1⁢D_w2−12⁢2⁢D_x⁢D_z2⁢D_w1+12⁢I⁢2⁢D_y⁢D_z1⁢D_w2−12⁢I⁢2⁢D_y⁢D_z2⁢D_w1−12⁢2⁢D_z⁢D_z1⁢D_w1+12⁢2⁢D_z⁢D_z2⁢D_w2
Note that this coincides with the result of using RaiseLowerIndices to raise the tensor index of σ using the inverse of the metric g.
sigmaCon&minusRaiseLowerIndices⁡InverseMetric⁡g,σ,1
0⁢D_t⁢D_z1⁢D_z1
The contraction of σ and sigmaCon over their tensor indices gives a product of epsilon spinors (EpsilonSpinor).
E1≔ContractIndices⁡σ,sigmaCon,1,1
E1:=D_z1⁢D_w1⁢D_z2⁢D_w2−D_z1⁢D_w2⁢D_z2⁢D_w1−D_z2⁢D_w1⁢D_z1⁢D_w2+D_z2⁢D_w2⁢D_z1⁢D_w1
Rearrange the indices so that the spinor indices are first, the barred spinor indices second.
E2≔RearrangeIndices⁡E1,2,3
E2:=D_z1⁢D_z2⁢D_w1⁢D_w2−D_z1⁢D_z2⁢D_w2⁢D_w1−D_z2⁢D_z1⁢D_w1⁢D_w2+D_z2⁢D_z1⁢D_w2⁢D_w1
evalDG⁡E2−EpsilonSpinor⁡con,spinor&tEpsilonSpinor⁡con,barspinor
0⁢D_z1⁢D_z1⁢D_z1⁢D_z1
Example 3.
Here we compute a solder form for the Gödel spacetime. (See (12.26) in Stephani Kramer et al.) First create a vector bundle over M with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.
Define the Gödel metric g on M. (Note that we have adjusted the metric to conform to the signature convention 1,−1,−1,−1 used by the spinor formalism in DifferentialGeometry .)
g≔evalDG⁡dt&tdt+exp⁡x⁢dt&sdz−dx&tdx−dy&tdy+12⁢exp⁡2⁢x⁢dz&tdz
g:=dt⁢dt+12⁢ⅇx⁢dt⁢dz−dx⁢dx−dy⁢dy+12⁢ⅇx⁢dz⁢dt+12⁢ⅇ2⁢x⁢dz⁢dz
Use DGGramSchmidt to calculate an orthonormal frame F for the metric g.
F≔DGGramSchmidt⁡D_t,D_x,D_y,D_z,g,signature=1,−1,−1,−1assumingx::real
F:=D_t,D_x,D_y,I⁢D_t−2⁢I⁢ⅇ−x⁢D_z
Use SolderForm to compute the solder form σ from the orthonormal frame F.
σ:=12⁢2⁢dt⁢D_z1⁢D_w1+12⁢2⁢dt⁢D_z2⁢D_w2+12⁢2⁢dx⁢D_z1⁢D_w2+12⁢2⁢dx⁢D_z2⁢D_w1−12⁢I⁢2⁢dy⁢D_z1⁢D_w2+12⁢I⁢2⁢dy⁢D_z2⁢D_w1+14⁢I⁢ⅇx⁢2+14⁢ⅇx⁢2⁢dz⁢D_z1⁢D_w1+−14⁢I⁢ⅇx⁢2+14⁢ⅇx⁢2⁢dz⁢D_z2⁢D_w2
Example 4.
For any metric of Lorentz signature 1,−1,−1,−1, a compatible solder form can be constructed.
DGsetup⁡u,v,x,y,z1,z2,w1,w2,N
frame name: N
Define a spacetime metric g3.
g3≔evalDG⁡x4⁢du&sdv−y2⁢dx&tdx−v2⁢dy&tdy
g3:=12⁢x4⁢du⁢dv+12⁢x4⁢dv⁢du−y2⁢dx⁢dx−v2⁢dy⁢dy
Use the command DGGramSchmidt to find an orthonormal frame.
F3≔DGGramSchmidt⁡D_u,D_v,D_x,D_y,g3,signature=1,−1,−1,−1assuming0<y,0<v,x::real
F3:=D_ux2+D_vx2,D_ux2−D_vx2,D_xy,D_yv
Calculate the solder form from F3.
σ3≔SolderForm⁡F3
σ3:=14⁢x2⁢2⁢du⁢D_z1⁢D_w1+14⁢x2⁢2⁢du⁢D_z1⁢D_w2+14⁢x2⁢2⁢du⁢D_z2⁢D_w1+14⁢x2⁢2⁢du⁢D_z2⁢D_w2+14⁢x2⁢2⁢dv⁢D_z1⁢D_w1−14⁢x2⁢2⁢dv⁢D_z1⁢D_w2−14⁢x2⁢2⁢dv⁢D_z2⁢D_w1+14⁢x2⁢2⁢dv⁢D_z2⁢D_w2−12⁢I⁢y⁢2⁢dx⁢D_z1⁢D_w2+12⁢I⁢y⁢2⁢dx⁢D_z2⁢D_w1+12⁢v⁢2⁢dy⁢D_z1⁢D_w1−12⁢v⁢2⁢dy⁢D_z2⁢D_w2
Use SpinorInnerProduct to check that σ3 is compatible with the metric g3.
SpinorInnerProduct⁡σ3,σ3
12⁢x4⁢du⁢dv+12⁢x4⁢dv⁢du−y2⁢dx⁢dx−v2⁢dy⁢dy
DifferentialGeometry, Tensor, BivectorSolderForm, convert/DGspinor, convert/DGtensor, DGGramSchmidt, DualBasis, EpsilonSpinor, GRQuery, NullTetrad, OrthonormalTetrad, RaiseLowerIndices, RaiseLowerSpinorIndices, RicciSpinor, SpinConnection, SpinorInnerProduct, WeylSpinor
Download Help Document