Tensor[SpinConnection] - compute the spin connection defined by a solder form
Calling Sequences
SpinConnection(σ)
Parameters
σ - a solder form
Description
Examples
See Also
The DifferentialGeometry Tensor package supports general computations with connections on vector bundles (Connection, Example 3; CovariantDerivative, Example 3; DirectionalCovariantDerivative, Example 3; and CurvatureTensor, Example 3). This functionality naturally provides for covariant differentiation of spinors.
The command SpinConnection(σ) computes the connection compatible with the solder form σ and the epsilon spinors.
Given a solder form σ, let g be the associated metric. There is a unique spin connection ∇ such that ∇σ=0 and ∇ε=0, where ε denotes either of the epsilon spinors (EpsilonSpinor). In the definition of ∇σ the tensorial argument (or index) is covariantly differentiated with respect to the Christoffel connection for g. It is this connection ∇ which is computed by the command SpinConnection(sigma).
Note that a generic connection for the differentiation of spinors can be constructed using the Connection command.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SpinConnection(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SpinConnection.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a vector bundle E→M with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,E
frame name: E
Define a spacetime metric g on M.
g≔evalDG⁡x4⁢dt&tdt−dx&tdx−dy&tdy−dz&tdz
g≔x4⁢dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal frame on M with respect to the metric g.
F≔evalDG⁡1x2⁢D_t,D_x,D_y,D_z
F≔1x2⁢D_t,D_x,D_y,D_z
Calculate the solder form σ from the frame F.
σ≔SolderForm⁡F
σ≔x2⁢22⁢dt⁢D_z1⁢D_w1+x2⁢22⁢dt⁢D_z2⁢D_w2+22⁢dx⁢D_z1⁢D_w2+22⁢dx⁢D_z2⁢D_w1−I2⁢2⁢dy⁢D_z1⁢D_w2+I2⁢2⁢dy⁢D_z2⁢D_w1+22⁢dz⁢D_z1⁢D_w1−22⁢dz⁢D_z2⁢D_w2
Calculate the spin-connection for the solder form σ.
Γ2≔SpinConnection⁡σ
Γ2≔x⁢D_z1⁢dz2⁢dt+x⁢D_z2⁢dz1⁢dt+x⁢D_w1⁢dw2⁢dt+x⁢D_w2⁢dw1⁢dt
Example 2.
Define a rank 1 spinor φ. Calculate the covariant derivative of φ. Calculate the directional derivatives of φ.
φ≔evalDG⁡t2⁢D_z1−1y⁢D_z2
φ≔t2⁢D_z1−1y⁢D_z2
CovariantDerivative⁡φ,Γ2
−x+2⁢t⁢yy⁢D_z1⁢dt+x⁢t2⁢D_z2⁢dt+1y2⁢D_z2⁢dy
DirectionalCovariantDerivative⁡D_x,φ,Γ2
0⁢D_z1
DirectionalCovariantDerivative⁡D_y,φ,Γ2
1y2⁢D_z2
DirectionalCovariantDerivative⁡D_z,φ,Γ2
DirectionalCovariantDerivative⁡y⁢D_t,φ,Γ2
−x+2⁢t⁢y⁢D_z1+x⁢y⁢t2⁢D_z2
Example 3.
Check that the covariant derivative of σ vanishes. Because σ is a spin-tensor, two connections are required. Calculate the Christoffel connection for the metric g.
Γ1≔Christoffel⁡g
Γ1≔2x⁢D_t⁢dt⁢dx+2x⁢D_t⁢dx⁢dt+2⁢x3⁢D_x⁢dt⁢dt
CovariantDerivative⁡σ,Γ1,Γ2
0⁢dt⁢D_z1⁢D_z1⁢dt
Define an epsilon spinor and check that its covariant derivative vanishes.
Eps≔EpsilonSpinor⁡cov,spinor
Eps≔dz1⁢dz2−dz2⁢dz1
CovariantDerivative⁡Eps,Γ2
0⁢dz1⁢dz1⁢dt
Example 4.
Calculate the curvature spin-tensor for the spin-connection Gamma2.
F≔CurvatureTensor⁡Γ2
F≔−D_z1⁢dz2⁢dt⁢dx+D_z1⁢dz2⁢dx⁢dt−D_z2⁢dz1⁢dt⁢dx+D_z2⁢dz1⁢dx⁢dt−D_w1⁢dw2⁢dt⁢dx+D_w1⁢dw2⁢dx⁢dt−D_w2⁢dw1⁢dt⁢dx+D_w2⁢dw1⁢dx⁢dt
The curvature tensor R for the Christoffel connection can be expressed in terms of the curvature spin-tensor F and the bivector solder forms S by the identity
2 Ri jhk=Si jA BFA Bhk + Si jA' B'FA' B'hk. (*)
Let's check this formula for the Christoffel connection Gamma1 and the spin-connection Gamma2. First calculate the curvature tensor for Gamma1.
R≔CurvatureTensor⁡Γ1
R≔−2x2⁢D_t⁢dx⁢dt⁢dx+2x2⁢D_t⁢dx⁢dx⁢dt−2⁢x2⁢D_x⁢dt⁢dt⁢dx+2⁢x2⁢D_x⁢dt⁢dx⁢dt
Calculate the complex conjugate of the spinor curvature F.
barF≔ConjugateSpinor⁡F
barF≔−D_z1⁢dz2⁢dt⁢dx+D_z1⁢dz2⁢dx⁢dt−D_z2⁢dz1⁢dt⁢dx+D_z2⁢dz1⁢dx⁢dt−D_w1⁢dw2⁢dt⁢dx+D_w1⁢dw2⁢dx⁢dt−D_w2⁢dw1⁢dt⁢dx+D_w2⁢dw1⁢dx⁢dt
Calculate the bivector soldering forms S and barS.
S≔BivectorSolderForm⁡σ,spinor,indextype=con,cov,cov,con
S≔1x2⁢D_t⁢dx⁢dz1⁢D_z2+1x2⁢D_t⁢dx⁢dz2⁢D_z1+Ix2⁢D_t⁢dy⁢dz1⁢D_z2−Ix2⁢D_t⁢dy⁢dz2⁢D_z1+1x2⁢D_t⁢dz⁢dz1⁢D_z1−1x2⁢D_t⁢dz⁢dz2⁢D_z2+x2⁢D_x⁢dt⁢dz1⁢D_z2+x2⁢D_x⁢dt⁢dz2⁢D_z1−I⁢D_x⁢dy⁢dz1⁢D_z1+I⁢D_x⁢dy⁢dz2⁢D_z2−D_x⁢dz⁢dz1⁢D_z2+D_x⁢dz⁢dz2⁢D_z1+I⁢x2⁢D_y⁢dt⁢dz1⁢D_z2−I⁢x2⁢D_y⁢dt⁢dz2⁢D_z1+I⁢D_y⁢dx⁢dz1⁢D_z1−I⁢D_y⁢dx⁢dz2⁢D_z2−I⁢D_y⁢dz⁢dz1⁢D_z2−I⁢D_y⁢dz⁢dz2⁢D_z1+x2⁢D_z⁢dt⁢dz1⁢D_z1−x2⁢D_z⁢dt⁢dz2⁢D_z2+D_z⁢dx⁢dz1⁢D_z2−D_z⁢dx⁢dz2⁢D_z1+I⁢D_z⁢dy⁢dz1⁢D_z2+I⁢D_z⁢dy⁢dz2⁢D_z1
barS≔BivectorSolderForm⁡σ,barspinor,indextype=con,cov,cov,con
barS≔1x2⁢D_t⁢dx⁢dw1⁢D_w2+1x2⁢D_t⁢dx⁢dw2⁢D_w1−Ix2⁢D_t⁢dy⁢dw1⁢D_w2+Ix2⁢D_t⁢dy⁢dw2⁢D_w1+1x2⁢D_t⁢dz⁢dw1⁢D_w1−1x2⁢D_t⁢dz⁢dw2⁢D_w2+x2⁢D_x⁢dt⁢dw1⁢D_w2+x2⁢D_x⁢dt⁢dw2⁢D_w1+I⁢D_x⁢dy⁢dw1⁢D_w1−I⁢D_x⁢dy⁢dw2⁢D_w2−D_x⁢dz⁢dw1⁢D_w2+D_x⁢dz⁢dw2⁢D_w1−I⁢x2⁢D_y⁢dt⁢dw1⁢D_w2+I⁢x2⁢D_y⁢dt⁢dw2⁢D_w1−I⁢D_y⁢dx⁢dw1⁢D_w1+I⁢D_y⁢dx⁢dw2⁢D_w2+I⁢D_y⁢dz⁢dw1⁢D_w2+I⁢D_y⁢dz⁢dw2⁢D_w1+x2⁢D_z⁢dt⁢dw1⁢D_w1−x2⁢D_z⁢dt⁢dw2⁢D_w2+D_z⁢dx⁢dw1⁢D_w2−D_z⁢dx⁢dw2⁢D_w1−I⁢D_z⁢dy⁢dw1⁢D_w2−I⁢D_z⁢dy⁢dw2⁢D_w1
The first term on the right-hand side of (*) is
R1≔ContractIndices⁡S,F,3,1,4,2
R1≔−2x2⁢D_t⁢dx⁢dt⁢dx+2x2⁢D_t⁢dx⁢dx⁢dt−2⁢x2⁢D_x⁢dt⁢dt⁢dx+2⁢x2⁢D_x⁢dt⁢dx⁢dt+2⁢I⁢D_y⁢dz⁢dt⁢dx−2⁢I⁢D_y⁢dz⁢dx⁢dt−2⁢I⁢D_z⁢dy⁢dt⁢dx+2⁢I⁢D_z⁢dy⁢dx⁢dt
The second term on the right-hand side of (*) is
R2≔ContractIndices⁡barS,barF,3,1,4,2
R2≔−2x2⁢D_t⁢dx⁢dt⁢dx+2x2⁢D_t⁢dx⁢dx⁢dt−2⁢x2⁢D_x⁢dt⁢dt⁢dx+2⁢x2⁢D_x⁢dt⁢dx⁢dt−2⁢I⁢D_y⁢dz⁢dt⁢dx+2⁢I⁢D_y⁢dz⁢dx⁢dt+2⁢I⁢D_z⁢dy⁢dt⁢dx−2⁢I⁢D_z⁢dy⁢dx⁢dt
LHS≔2&multR
LHS≔−4x2⁢D_t⁢dx⁢dt⁢dx+4x2⁢D_t⁢dx⁢dx⁢dt−4⁢x2⁢D_x⁢dt⁢dt⁢dx+4⁢x2⁢D_x⁢dt⁢dx⁢dt
RHS≔R1&plusR2
RHS≔−4x2⁢D_t⁢dx⁢dt⁢dx+4x2⁢D_t⁢dx⁢dx⁢dt−4⁢x2⁢D_x⁢dt⁢dt⁢dx+4⁢x2⁢D_x⁢dt⁢dx⁢dt
LHS&minusRHS
0⁢D_t⁢dt⁢dt⁢dt
DifferentialGeometry, Tensor, BivectorSolderForm, Connection, Physics[Christoffel], CovariantDerivative, Physics[D_], DirectionalCovariantDerivative, CurvatureTensor, Physics[Riemann], EnergyMomentumTensor, EpsilonSpinor, MatterFieldEquations
Download Help Document