DifferentialGeometry/Tensor/SpinConnection - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/SpinConnection

Tensor[SpinConnection] - compute the spin connection defined by a solder form

Calling Sequences

     SpinConnection(σ)

Parameters

    σ   - a solder form

 

Description

Examples

See Also

Description

• 

The DifferentialGeometry Tensor package supports general computations with connections on vector bundles (Connection, Example 3; CovariantDerivative, Example 3; DirectionalCovariantDerivative, Example 3; and CurvatureTensor, Example 3).  This functionality naturally provides for covariant differentiation of spinors.

• 

The command SpinConnection(σ) computes the connection compatible with the solder form σ and the epsilon spinors.

• 

Given a solder form σ, let g be the associated metric. There is a unique spin connection  such that σ=0 and ε=0, where ε denotes either of the epsilon spinors (EpsilonSpinor). In the definition of σ the tensorial argument (or index) is covariantly differentiated with respect to the Christoffel connection for g. It is this connection  which is computed by the command SpinConnection(sigma).

• 

Note that a generic connection for the differentiation of spinors can be constructed using the Connection command.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SpinConnection(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-SpinConnection.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle EM with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.

DGsetupt,x,y,z,z1,z2,w1,w2,E

frame name: E

(2.1)

 

Define a spacetime metric g on M.

E > 

gevalDGx4dt&tdtdx&tdxdy&tdydz&tdz

gx4dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal frame on M with respect to the metric g.

E > 

FevalDG1x2D_t,D_x,D_y,D_z

F1x2D_t,D_x,D_y,D_z

(2.3)

 

Calculate the solder form σ from the frame F.

E > 

σSolderFormF

σx222dtD_z1D_w1+x222dtD_z2D_w2+22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2

(2.4)

 

Calculate the spin-connection for the solder form σ.

E > 

Γ2SpinConnectionσ

Γ2xD_z1dz2dt+xD_z2dz1dt+xD_w1dw2dt+xD_w2dw1dt

(2.5)

 

Example 2.

Define a rank 1 spinor φ. Calculate the covariant derivative of φ. Calculate the directional derivatives of φ.

E > 

φevalDGt2D_z11yD_z2

φt2D_z11yD_z2

(2.6)
E > 

CovariantDerivativeφ,Γ2

x+2tyyD_z1dt+xt2D_z2dt+1y2D_z2dy

(2.7)
E > 

DirectionalCovariantDerivativeD_x,φ,Γ2

0D_z1

(2.8)
E > 

DirectionalCovariantDerivativeD_y,φ,Γ2

1y2D_z2

(2.9)
E > 

DirectionalCovariantDerivativeD_z,φ,Γ2

0D_z1

(2.10)
E > 

DirectionalCovariantDerivativeyD_t,φ,Γ2

x+2tyD_z1+xyt2D_z2

(2.11)

 

Example 3.

Check that the covariant derivative of σ vanishes. Because σ is a spin-tensor, two connections are required. Calculate the Christoffel connection for the metric g.

E > 

Γ1Christoffelg

Γ12xD_tdtdx+2xD_tdxdt+2x3D_xdtdt

(2.12)
E > 

CovariantDerivativeσ,Γ1,Γ2

0dtD_z1D_z1dt

(2.13)

 

Define an epsilon spinor and check that its covariant derivative vanishes.

E > 

EpsEpsilonSpinorcov,spinor

Epsdz1dz2dz2dz1

(2.14)
E > 

CovariantDerivativeEps,Γ2

0dz1dz1dt

(2.15)

 

Example 4.

Calculate the curvature spin-tensor for the spin-connection Gamma2.

E > 

FCurvatureTensorΓ2

FD_z1dz2dtdx+D_z1dz2dxdtD_z2dz1dtdx+D_z2dz1dxdtD_w1dw2dtdx+D_w1dw2dxdtD_w2dw1dtdx+D_w2dw1dxdt

(2.16)

 

The curvature tensor R for the Christoffel connection can be expressed in terms of the curvature spin-tensor F and the bivector solder forms S by the identity

 

2 Ri jhk=Si jA BFA Bhk + Si jA' B'FA' B'hk.    (*)

 

Let's check this formula for the Christoffel connection Gamma1 and the spin-connection Gamma2. First calculate the curvature tensor for Gamma1.

E > 

RCurvatureTensorΓ1

R2x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt

(2.17)

 

Calculate the complex conjugate of the spinor curvature F.

E > 

barFConjugateSpinorF

barFD_z1dz2dtdx+D_z1dz2dxdtD_z2dz1dtdx+D_z2dz1dxdtD_w1dw2dtdx+D_w1dw2dxdtD_w2dw1dtdx+D_w2dw1dxdt

(2.18)

 

Calculate the bivector soldering forms S and barS.

E > 

SBivectorSolderFormσ,spinor,indextype=con,cov,cov,con

S1x2D_tdxdz1D_z2+1x2D_tdxdz2D_z1+Ix2D_tdydz1D_z2Ix2D_tdydz2D_z1+1x2D_tdzdz1D_z11x2D_tdzdz2D_z2+x2D_xdtdz1D_z2+x2D_xdtdz2D_z1ID_xdydz1D_z1+ID_xdydz2D_z2D_xdzdz1D_z2+D_xdzdz2D_z1+Ix2D_ydtdz1D_z2Ix2D_ydtdz2D_z1+ID_ydxdz1D_z1ID_ydxdz2D_z2ID_ydzdz1D_z2ID_ydzdz2D_z1+x2D_zdtdz1D_z1x2D_zdtdz2D_z2+D_zdxdz1D_z2D_zdxdz2D_z1+ID_zdydz1D_z2+ID_zdydz2D_z1

(2.19)
E > 

barSBivectorSolderFormσ,barspinor,indextype=con,cov,cov,con

barS1x2D_tdxdw1D_w2+1x2D_tdxdw2D_w1Ix2D_tdydw1D_w2+Ix2D_tdydw2D_w1+1x2D_tdzdw1D_w11x2D_tdzdw2D_w2+x2D_xdtdw1D_w2+x2D_xdtdw2D_w1+ID_xdydw1D_w1ID_xdydw2D_w2D_xdzdw1D_w2+D_xdzdw2D_w1Ix2D_ydtdw1D_w2+Ix2D_ydtdw2D_w1ID_ydxdw1D_w1+ID_ydxdw2D_w2+ID_ydzdw1D_w2+ID_ydzdw2D_w1+x2D_zdtdw1D_w1x2D_zdtdw2D_w2+D_zdxdw1D_w2D_zdxdw2D_w1ID_zdydw1D_w2ID_zdydw2D_w1

(2.20)

 

The first term on the right-hand side of (*) is

E > 

R1ContractIndicesS,F,3,1,4,2

R12x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt+2ID_ydzdtdx2ID_ydzdxdt2ID_zdydtdx+2ID_zdydxdt

(2.21)

 

The second term on the right-hand side of (*) is

E > 

R2ContractIndicesbarS,barF,3,1,4,2

R22x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt2ID_ydzdtdx+2ID_ydzdxdt+2ID_zdydtdx2ID_zdydxdt

(2.22)
E > 

LHS2&multR

LHS4x2D_tdxdtdx+4x2D_tdxdxdt4x2D_xdtdtdx+4x2D_xdtdxdt

(2.23)
E > 

RHSR1&plusR2

RHS4x2D_tdxdtdx+4x2D_tdxdxdt4x2D_xdtdtdx+4x2D_xdtdxdt

(2.24)
E > 

LHS&minusRHS

0D_tdtdtdt

(2.25)

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, Connection, Physics[Christoffel], CovariantDerivative, Physics[D_], DirectionalCovariantDerivative, CurvatureTensor, Physics[Riemann], EnergyMomentumTensor, EpsilonSpinor, MatterFieldEquations