Tensor[TensorBrackets] - calculate the Schouten bracket and Frolicher-Nijenhuis brackets of tensor fields
Calling Sequences
TensorBrackets( R, S, C, keyword)
Parameters
R, S - type r,0and type 0,s contravariant tensor fields on a manifold M
R, S - type 1, r and type 1,s tensor fields on a manifold M, skew-symmetric in their covariant indices
C - (optional) a symmetric connection on TM
keyword - a string, either "Schouten" or "Frolicher-Nijenhuis"
Description
Examples
Let R and S be type r0 and type s0 contravariant tensor fields on a manifold M, respectively. The Schouten bracket T=R,S is a contravariant tensor field of type r+s−1 which generalizes the Lie bracket of two vector fields. The Schouten bracket enjoys the following properties:
1. R,S=−S,R.
2. If R and S are symmetric, then R,S is symmetric. If R and S are skew-symmetric, then R,S is skew-symmetric.
3. If we denote the totally symmetric and totally skew-symmetric parts of a contravariant tensor T by T+and T−, then R,S=R+,S+ + R−,S−.
4. If R is a type 10 tensor field and S is either symmetric or skew-symmetric, then R,S=LRS, where LR is the Lie derivative along R.
5. If R and S are symmetric and X is a vector field, then R,X⊙S=R,X⊙S+X⊙R,S, where ⊙ is the symmetric tensor product.
6. If R and S are skew-symmetric and X is a vector field, then R,X∧S=R,X∧S+−1r+1X∧R,S.
7. For the explicit coordinate formula for the Schouten bracket and other properties, see A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I.
8. A type 20 skew-symmetric tensor field P on a manifold M defines a Poisson structure if P,P=0.
Let R and S be type 1r and type 1s tensor fields on a manifold M, each of which is skew-symmetric in its covariant indices. Such tensors are often referred to as vector-valued differential forms (of degrees r and s). The Frolicher-Nijenhuis bracket T=R,S is a vector-valued differential-form of degree r+s. The Frolicher-Nijenhuis bracket enjoys the following properties:
1. R,S=−1rs+1S,R.
2. If r=0, then R,S=LRS.
3. If X and Y are vector fields and α and β are differential forms of degrees r and s, then X⊗α,Y⊗β=X,Y⊗α∧β−X⊗LYα∧β+Y⊗α∧LXβ+sr+1X⊗Y·α∧dβ−−1r+srs+1Y⊗dα∧X·β,
where Y·α is the interior product of Y and α.
4. For the explicit coordinate formula for Frolicher-Nijenhuis bracket, see A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields II.
5. If J is a 11 tensor field, then the Frolicher-Nijenhuis bracket J,J is called the torsion of J.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TensorBrackets(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TensorBrackets.
with(DifferentialGeometry):with(Tensor):
DGsetup([x, y, z, w], M):
Example 1.
Compute the Schouten brackets of the tensors T1 and T2 and check that the result coincides with the Lie derivative LT1T2.
X := evalDG(x*D_y - z*D_w);
X:=x⁢D_y−z⁢D_w
T1 := convert(X, DGtensor);
T1:=x⁢D_y−z⁢D_w
T2 := evalDG(w*D_x &s D_y + y*D_z &s D_w);
T2:=w2⁢D_x⁢D_y+w2⁢D_y⁢D_x+y2⁢D_z⁢D_w+y2⁢D_w⁢D_z
TensorBrackets(T1, T2, "Schouten");
−12⁢z⁢D_x⁢D_y−12⁢z⁢D_y⁢D_x−w⁢D_y⁢D_y+12⁢x⁢D_z⁢D_w+12⁢x⁢D_w⁢D_z+y⁢D_w⁢D_w
LieDerivative(X, T2);
Example 2.
Find all functions fx,y,z,w such that the skew-symmetric tensor W satisfies W,W=0.
W0 := evalDG(D_x &w D_y + z*D_y &w D_z + f(x, y, z, w)*D_z &w D_w);
W0:=D_x⁢⋀⁢D_y+z⁢D_y⁢⋀⁢D_z+f⁡x,y,z,w⁢D_z⁢⋀⁢D_w
W := convert(W0, DGtensor);
W:=D_x⁢D_y−D_y⁢D_x+z⁢D_y⁢D_z−z⁢D_z⁢D_y+f⁡x,y,z,w⁢D_z⁢D_w−f⁡x,y,z,w⁢D_w⁢D_z
S := TensorBrackets(W, W, "Schouten"):
pde:=Tools:-DGinfo(S, "CoefficientSet");
pde:=−43⁢∂∂y⁢f⁡x,y,z,w,43⁢∂∂y⁢f⁡x,y,z,w,43⁢z⁢∂∂z⁢f⁡x,y,z,w−43⁢∂∂x⁢f⁡x,y,z,w−43⁢f⁡x,y,z,w,43⁢f⁡x,y,z,w−43⁢z⁢∂∂z⁢f⁡x,y,z,w+43⁢∂∂x⁢f⁡x,y,z,w
pdsolve(pde);
f⁡x,y,z,w=_F1⁡z⁢ⅇx,w⁢ⅇ−x
Example 3.
Check, by way of an example, that the Schouten bracket, acting on symmetric tensors, satisfies the Jacobi identity.
T3 := evalDG(y^2*D_x &s D_y + x*z *D_y &s D_w);
T3:=y22⁢D_x⁢D_y+y22⁢D_y⁢D_x+x⁢z2⁢D_y⁢D_w+x⁢z2⁢D_w⁢D_y
T4 := evalDG(D_y &s D_w);
T4:=12⁢D_y⁢D_w+12⁢D_w⁢D_y
T5 := evalDG(x*z*w* &s (D_y, D_y, D_z));
T5:=x⁢z⁢w3⁢D_y⁢D_y⁢D_z+x⁢z⁢w3⁢D_y⁢D_z⁢D_y+x⁢z⁢w3⁢D_z⁢D_y⁢D_y
F :=(X, Y, Z) -> TensorBrackets(X, TensorBrackets(Y, Z, "Schouten"), "Schouten");
F:=X,Y,Z→DifferentialGeometry:-Tensor:-TensorBrackets⁡X,DifferentialGeometry:-Tensor:-TensorBrackets⁡Y,Z,Schouten,Schouten
F(T3, T4, T5) &plus F(T5, T3, T4) &plus F(T4, T5, T3);
0⁢D_x⁢D_x⁢D_x⁢D_x⁢D_x
Example 4.
Compute the Frolicher-Nijenhuis of the tensors T6 and T7 and check that the result coincides with the Lie derivative LT6T7.
Also check that T1,T2=−T2,T1 and that T2,T2=0.
X := evalDG(z*D_y + x*D_w);
X:=z⁢D_y+x⁢D_w
T6 := convert(X, DGtensor);
T6:=z⁢D_y+x⁢D_w
T7 := evalDG(w^2* D_x &t (dx &w dy &w dw) + y^2* D_y &t(dx &w dz &w dw));
T7:=w2⁢D_x⁢dx⁢dy⁢dw−w2⁢D_x⁢dx⁢dw⁢dy−w2⁢D_x⁢dy⁢dx⁢dw+w2⁢D_x⁢dy⁢dw⁢dx+w2⁢D_x⁢dw⁢dx⁢dy−w2⁢D_x⁢dw⁢dy⁢dx+y2⁢D_y⁢dx⁢dz⁢dw−y2⁢D_y⁢dx⁢dw⁢dz−y2⁢D_y⁢dz⁢dx⁢dw+y2⁢D_y⁢dz⁢dw⁢dx+y2⁢D_y⁢dw⁢dx⁢dz−y2⁢D_y⁢dw⁢dz⁢dx
S1 := TensorBrackets(T6, T7, "Frolicher-Nijenhuis");
S1:=2⁢x⁢w⁢D_x⁢dx⁢dy⁢dw+w2⁢D_x⁢dx⁢dz⁢dw−2⁢x⁢w⁢D_x⁢dx⁢dw⁢dy−w2⁢D_x⁢dx⁢dw⁢dz−2⁢x⁢w⁢D_x⁢dy⁢dx⁢dw+2⁢x⁢w⁢D_x⁢dy⁢dw⁢dx−w2⁢D_x⁢dz⁢dx⁢dw+w2⁢D_x⁢dz⁢dw⁢dx+2⁢x⁢w⁢D_x⁢dw⁢dx⁢dy+w2⁢D_x⁢dw⁢dx⁢dz−2⁢x⁢w⁢D_x⁢dw⁢dy⁢dx−w2⁢D_x⁢dw⁢dz⁢dx+2⁢z⁢y⁢D_y⁢dx⁢dz⁢dw−2⁢z⁢y⁢D_y⁢dx⁢dw⁢dz−2⁢z⁢y⁢D_y⁢dz⁢dx⁢dw+2⁢z⁢y⁢D_y⁢dz⁢dw⁢dx+2⁢z⁢y⁢D_y⁢dw⁢dx⁢dz−2⁢z⁢y⁢D_y⁢dw⁢dz⁢dx−w2⁢D_w⁢dx⁢dy⁢dw+w2⁢D_w⁢dx⁢dw⁢dy+w2⁢D_w⁢dy⁢dx⁢dw−w2⁢D_w⁢dy⁢dw⁢dx−w2⁢D_w⁢dw⁢dx⁢dy+w2⁢D_w⁢dw⁢dy⁢dx
S1 &minus LieDerivative(X, T7);
0⁢D_x⁢dx⁢dx⁢dx
S1 &plus TensorBrackets(T7, T6, "Frolicher-Nijenhuis");
Example 5.
Show that T8, T8=0.
T8 := evalDG(w^2* z*D_x &t (dx &w dy) + y^2*x *D_y &t(dx &w dz));
T8:=w2⁢z⁢D_x⁢dx⁢dy−w2⁢z⁢D_x⁢dy⁢dx+y2⁢x⁢D_y⁢dx⁢dz−y2⁢x⁢D_y⁢dz⁢dx
TensorBrackets(T8, T8, "Frolicher-Nijenhuis");
0⁢D_x⁢dx⁢dx⁢dx⁢dx
Example 6.
Use the tensors T8 and T9 to show that Frolicher-Nijenhuis is independent of the connection used to calculate it.
T9 := evalDG(w^2* z^2*D_x &t (dy &w dw) + y^2*x^2* D_y &t(dx &w dw));
T9:=w2⁢z2⁢D_x⁢dy⁢dw−w2⁢z2⁢D_x⁢dw⁢dy+y2⁢x2⁢D_y⁢dx⁢dw−y2⁢x2⁢D_y⁢dw⁢dx
C := Connection(SymmetrizeIndices(z^2*D_y &t dx &t dz + x*y*D_y &t dx &t dy, [2, 3], "Symmetric"));
C:=12⁢y⁢x⁢D_y⁢dx⁢dy+12⁢z2⁢D_y⁢dx⁢dz+12⁢y⁢x⁢D_y⁢dy⁢dx+12⁢z2⁢D_y⁢dz⁢dx
TensorBrackets(T8, T9, "Frolicher-Nijenhuis") &minus TensorBrackets(T8, T9, C, "Frolicher-Nijenhuis");
Example 7.
Find all functions fx,y,z,w such that the 11 tensor T10 satisfies T10,T10=0.
T10 := evalDG(D_x &t dy + z*D_y &t dz +f(x, y, z, w)*D_z &t dw);
T10:=D_x⁢dy+z⁢D_y⁢dz+f⁡x,y,z,w⁢D_z⁢dw
PDEtools[declare](f(x, y, z, w));
f⁡x,y,z,w⁢will now be displayed as⁢f
S2 := TensorBrackets(T10, T10, "Frolicher-Nijenhuis");
S2:=−2⁢z⁢fx⁢D_y⁢dx⁢dw−2⁢z⁢fy⁢D_y⁢dy⁢dw−2⁢f+2⁢z⁢fz⁢D_y⁢dz⁢dw+2⁢z⁢fx⁢D_y⁢dw⁢dx+2⁢z⁢fy⁢D_y⁢dw⁢dy+2⁢f+2⁢z⁢fz⁢D_y⁢dw⁢dz+2⁢fx⁢D_z⁢dy⁢dw+2⁢z⁢fy⁢D_z⁢dz⁢dw−2⁢fx⁢D_z⁢dw⁢dy−2⁢z⁢fy⁢D_z⁢dw⁢dz
pde := Tools:-DGinfo(S2, "CoefficientSet");
pde:=−2⁢fx,2⁢fx,−2⁢z⁢fx,2⁢z⁢fx,−2⁢z⁢fy,2⁢z⁢fy,2⁢f+2⁢z⁢fz,−2⁢z⁢fz−2⁢f
f=_F1⁡wz
See Also
DifferentialGeometry
Tensor
Connection
DGinfo
LieDerivative
SymmetrizeIndices
Download Help Document