DifferentialGeometry:-Tools[DGbiform, DGform, DGtensor, DGvector]
Calling Sequence
Parameters
Description
Examples
DGbiform(x, M)
DGform(x, M)
DGtensor(x, indexType, M)
DGvector(y, M)
x
-
a positive integer, a list of positive integers, a coordinate variable, or a list of coordinate variables
M
(optional) the name of defined frame
indexType
specifying the index type of the tensor
y
a positive integer or a coordinate variable
The command DGform will create a single term differential form. Let Theta = [theta_1, theta_2, theta_3, ...] denote the coframe for the current frame or, if the optional argument M is given, the frame M. The list Theta can be obtained from the command DGinfo with the keyword "frameBaseForms" or "frameJetForms". Let V = [x_1, x_2, x_3, ...] denote the local coordinates for the current frame or, if the optional argument M is given, the frame M. The list V can be obtained from the command DGinfo with the keyword "frameIndependentVariables" or "frameJetVariables". If the integer i or coordinate x_i is given, the command returns the corresponding 1-form theta_i. If a list of p integers [i, j, k, ...] or coordinates [x_i, x_j, x_k, ...] is given, the command returns the p-form theta_i &w theta_j &w theta_k...
The commands DGbiform, DGtensor, and DGvector work in a similar fashion.
The command DGform is part of the DifferentialGeometry:-Tools package and so can be used in the form DGform(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGform. DGbiform, DGtensor, and DGvector work in the same way.
with⁡DifferentialGeometry:with⁡Tools:
Example 1.
Define a manifold M with coordinates [x, y, z, w].
DGsetup⁡x,y,z,w,M:
DGvector⁡x
D_x
DGvector⁡3
D_z
DGform⁡y
dy
DGform⁡4
dw
DGform⁡x,y
dx⁢⋀⁢dy
DGform⁡1,2,3,4
dx⁢⋀⁢dy⁢⋀⁢dz⁢⋀⁢dw
DGtensor⁡x,con_bas
DGtensor⁡2,cov_bas
DGtensor⁡1,1,1,cov_bas,con_bas,cov_bas,
dx⁢D_x⁢dx
Example 2.
Define a rank 3 vector bundle E with coordinates [x, y, u, v, w] over a two dimensional base with coordinates [x, y].
DGsetup⁡x,y,u,v,w,E
frame name: E
DGtensor⁡x,v,v,con_bas,cov_bas,con_bas,
D_x⁢dv⁢D_v
Define the jet space J^2(R^2, R^2) for two functions u and v of 2 independent variables x and y.
DGsetup⁡x,y,u,v,J,2:
ω≔DGbiform⁡u1,1
ω≔Cu1,1
convert⁡ω,DGform
−u1,1,1⁢dx−u1,1,2⁢dy+du1,1
See Also
DifferentialGeometry
Tools
evalDG
DGinfo
DGzip
Download Help Document