Loss Element - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Loss Element

Loss Element component

        

 

The Loss Element component models losses using velocity-dependent efficiency.

 

 

Kinematic Equation

 

ϕfb = ϕfa+ϕ  

 

Where ϕfa  and ϕfb are the absolute rotation angles of flangea and flangeb, respectively and ϕ is the fixed rotation angles of flangeb with respect to flangeb.

Also ϕa and ϕb are defined as:

 

 

ϕx = ϕfx  ϕsupport      use Support = true0otherwise  ,   x ∈ a,b

 

 

 

Torque Balance Equation (No Inertia)

 

τb= τa+τloss

 

Where τa and τb are the torques applied to flangea and flangeb, respectively.

 

Also   τloss is the loss torque and is defined as:

τloss&equals;&lpar;1&eta;1&lpar;&omega;a&rpar;&rpar; &tau;a        &omega;a·&tau;a0  &lpar;11η2&lpar;ωa&rpar; &rpar;·&tau;a     &omega;a·&tau;a<0        

Where

ωa = &DifferentialD;&DifferentialD; t ϕa &equals;&varphi;·a 

 

 

Power Loss:

When the gear is non-ideal (ideal = false ), the power loss (Ploss) is calculated as:

 

Ploss &equals; 0ideal&equals;true or ideal&equals;false and locked&equals;true1η1 τa· ωaτa· ωa0 11η2 τa· ωaτa· ωa<0

 

Connections 

Name

Condition

Description

ID

flangea

-

Flange to driver shaft

flange_a

flangeb

-

Flange to driven shaft

flange_b

support

use support &equals;true

Conditional Support Flange

Support

Loss Power

ideal&equals;false

Conditional real output port for power loss

lossPower

 

 

Parameters

Symbol

Condition

Default

Units

Description

ID

ideal

-

false

-

Defines whether the component is:

true - ideal or

false - non-ideal

ideal

&varphi; 

-

0

rad

Defines fixed rotation of flangeb with respect to flangea

deltaPhi

data source

ideal&equals;false

GUI

-

Defines the source for the loss data:

• 

entered via GUI [GUI]

• 

by an attachment [attachment]

• 

by an external file [file]        

datasourcemode

Use support        

-

false

-

Enables/disables the support flange        

useSupport

&eta;&omega;a

data source = GUI

  0&comma;1&comma;1 

rads&comma;&comma;

Defines velocity dependent efficiency

The columns are:

[ωa     (η1 (ωa )     η2 (ωa )]

Five options are available:

• 

1 by 1 array: entered value is taken as the constant efficiency for forward and backward cases

η1 (ωa ) = η2 (ωa ) = η

• 

1 by 2 array: first entered value is taken as the constant efficiency for forward case and the second for backward cases

η1 (ωa ) = &eta;1 &comma; &eta;2 (ωa ) = η2

• 

1 by 3 array: first column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

• 

 n by 2 array: 2nd column is efficiency

&eta; (ωa ) = η1 (ωa ) = η2(ωa )

• 

n by 3 array:

2nd column is forward efficiency

η1  (ωa )

3rd column is backward efficiency

η2  (ωa )

Note: The rows of the array are ordered according to ωa, with the first row having the smallest |ωa|

lossTable

data source = attachment

  -

Defines velocity dependent efficiency

First column is angular velocity (ωa )

(See col &eta; below)

data

data source = file

  -

fileName

col &eta;

data source = attachment or file

  2&comma;3

 

-

Defines the corresponding data columns used for forward efficiency (η1) and backward efficiency (η2 )

Two options are available:

• 

1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency η1&equals;&eta;2 &equals; &eta; 

• 

1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency ( &eta;1&rpar; 

and data column corresponding to the second column number is used for backward efficiency ( &eta;2&rpar;

columns

smoothness

ideal&equals;false

Table points are linearly interpolated

-

Defines the smoothness of table interpolation. There are two options:

• 

Table points are linearly interpolated

• 

Table points are interpolated such that the first derivative is continuous

smoothness

 

See Also

Driveline Library Overview

MapleSim Library Overview

1-D Mechanical Overview

Loss Elements