Finance
BermudanSwaption
create a new Bermudan swaption
Calling Sequence
Parameters
Options
Description
Examples
References
Compatibility
BermudanSwaption(irswap, exercisetimes, opts)
BermudanSwaption(irswap, exercisedates, opts)
irswap
-
interest rate swap data structures; interest rate swap
exercisedates
list of dates given in a format recognized by ParseDate or a date data structure; dates when the option can be exercised
exercisetimes
list of non-negative constants; times when the option can be exercised
opts
(optional) equation(s) of the form option = value where option is one of referencedate or daycounter; specify options for the BermudanSwaption command
referencedate = a string containing a date specification in a format recognized by ParseDate or a date data structure -- This option provides the evaluation date. It is set to the global evaluation date by default.
daycounter = a name representing a supported day counter (e.g. ISDA, Simple) or a day counter data structure created using the DayCounter constructor -- This option provides a day counter that will be used to convert the period between two dates to a fraction of the year. This option is used only if one of earliestexercise or latestexercise is specified as a date.
The BermudanSwaption command creates a new Bermudan-style swaption on the specified interest rate swap. This swaption can be exercised at any time or date given in the exercisetimes or exercisedates list.
The parameter irswap is the underlying interest rate swap (see InterestRateSwap for more details).
The parameter exercisedates specifies the dates when the swaption can be exercised. It has to be given as a list of dates in any of the formats recognized by the ParseDate command. The exercise times will be computed by converting the period between referencedate and the corresponding exercise date to a fraction of the year according to the day count convention specified by daycounter. Alternatively, one can specify exercise times directly using the exercisetimes parameter. In this case the referencedate and daycounter options are ignored.
The LatticePrice command can be used to price a Bermudan-style swaption using any given binomial or trinomial tree.
with⁡Finance:
SetEvaluationDate⁡November 17, 2006:
EvaluationDate⁡
November 17, 2006
nominal≔1000.0
fixing_days≔2
start≔AdvanceDate⁡1,Years,EURIBOR
start≔November 17, 2007
maturity≔AdvanceDate⁡start,5,Years,EURIBOR
maturity≔November 17, 2012
discount_curve≔ForwardCurve⁡0.04875825,daycounter=Actual365Fixed
discount_curve≔moduleend module
fixed_schedule≔Schedule⁡start,maturity,Annual,convention=Unadjusted,calendar=EURIBOR
fixed_schedule ≔ moduleend module
floating_schedule≔Schedule⁡start,maturity,Semiannual,convention=ModifiedFollowing,calendar=EURIBOR
floating_schedule ≔ moduleend module
benchmark≔BenchmarkRate⁡6,Months,EURIBOR,0.04875825
benchmark ≔ moduleend module
Construct an interest rate swap receiving the fixed-rate payments in exchange for the floating-rate payment.
swap≔InterestRateSwap⁡nominal,0.,fixed_schedule,benchmark,floating_schedule,0.
swap ≔ moduleend module
Compute the at-the-money rate for this interest rate swap.
atm_rate≔FairRate⁡swap,discount_curve
atm_rate≔0.04995609574
Construct three swaps.
itm_swap≔InterestRateSwap⁡nominal,0.8⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
itm_swap ≔ moduleend module
atm_swap≔InterestRateSwap⁡nominal,1.0⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
atm_swap ≔ moduleend module
otm_swap≔InterestRateSwap⁡nominal,1.2⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
otm_swap ≔ moduleend module
Here are cash flows for the paying leg of your interest rate swap.
cash_flows≔CashFlows⁡itm_swap,paying
cash_flows≔39.97833882 on 'November 17, 2008',39.95141436 on 'November 17, 2009',39.96487659 on 'November 17, 2010',39.96487659 on 'November 17, 2011',39.97833882 on 'November 19, 2012'
Here are cash flows for the receiving leg of your interest rate swap.
CashFlows⁡itm_swap,receiving
24.55793340 on 'May 19, 2008',24.54222773 on 'November 17, 2008',24.59383300 on 'May 18, 2009',24.74716833 on 'November 17, 2009',24.47342475 on 'May 17, 2010',24.88406756 on 'November 17, 2010',24.47342475 on 'May 17, 2011',24.88406756 on 'November 17, 2011',24.55868130 on 'May 17, 2012',25.08832826 on 'November 19, 2012'
These are days when coupon payments are scheduled to occur.
dates≔map⁡t↦tdate,cash_flows
dates≔date,date,date,date,date
Set up exercise dates.
exercise_dates≔map⁡t↦AdvanceDate⁡t,1,Days,EURIBOR,start,op⁡1..−2,dates
exercise_dates≔November 19, 2007,November 18, 2008,November 18, 2009,November 18, 2010,November 18, 2011
Construct three swaptions that can be exercised on any of the previous dates.
itm_swaption≔BermudanSwaption⁡itm_swap,exercise_dates
itm_swaption ≔ moduleend module
atm_swaption≔BermudanSwaption⁡atm_swap,exercise_dates
atm_swaption ≔ moduleend module
otm_swaption≔BermudanSwaption⁡otm_swap,exercise_dates
otm_swaption ≔ moduleend module
Price these swaptions using the Hull-White trinomial tree.
a≔0.048696
σ≔0.0058904
model≔HullWhiteModel⁡discount_curve,a,σ
model ≔ moduleend module
time_grid≔TimeGrid⁡YearFraction⁡maturity+0.5,100
time_grid ≔ moduleend module
short_rate_tree≔ShortRateTree⁡model,time_grid
short_rate_tree ≔ moduleend module
Price our swaptions using the tree constructed above.
LatticePrice⁡itm_swaption,short_rate_tree,discount_curve
42.37568409
LatticePrice⁡atm_swaption,short_rate_tree,discount_curve
13.41345287
LatticePrice⁡otm_swaption,short_rate_tree,discount_curve
2.795526880
You can also price these swaptions using an explicitly constructed trinomial tree.
ou_process≔OrnsteinUhlenbeckProcess⁡0.04875,0.04875,1.0,0.3
ou_process≔_X0
tree≔ShortRateTree⁡ou_process,time_grid
tree ≔ moduleend module
Price the swaptions using the second tree.
LatticePrice⁡itm_swaption,tree,discount_curve
41.39592398
LatticePrice⁡atm_swaption,tree,discount_curve
1.528598823
LatticePrice⁡otm_swaption,tree,discount_curve
0.
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice. New York: Springer-Verlag, 2001.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
The Finance[BermudanSwaption] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BermudanSwaption]
Finance[BinomialTree]
Finance[BlackScholesBinomialTree]
Finance[BlackScholesTrinomialTree]
Finance[EuropeanSwaption]
Finance[GetDescendants]
Finance[GetProbabilities]
Finance[GetUnderlying]
Finance[ImpliedBinomialTree]
Finance[ImpliedTrinomialTree]
Finance[LatticeMethods]
Finance[LatticePrice]
Finance[SetProbabilities]
Finance[SetUnderlying]
Finance[StochasticProcesses]
Finance[TreePlot]
Finance[TrinomialTree]
Download Help Document