CEVProcess - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Finance

  

CEVProcess

  

create new constant elasticity of variance (CEV) process

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

CEVProcess(x0, mu, sigma, beta, opts)

Parameters

x0

-

algebraic expression; initial value

mu

-

algebraic expression; drift parameter

sigma

-

algebraic expression; volatility parameter

beta

-

algebraic expression; elasticity parameter

opts

-

(optional) equation(s) of the form option = value where option is scheme; specify options for the CEVProcess command

Options

• 

scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.

Description

• 

The CEVProcess command creates new constant elasticity of variance (CEV) process St, which is governed by the stochastic differential equation (SDE)

dSt=μStdt+σStβ2dWt

where

– 

μ is the drift

– 

σ is the volatility

– 

β is the elasticity

and

– 

Wt is the standard Wiener process.

• 

The parameter x0 is the initial value of the process.

• 

The parameters mu, sigma and beta can be any algebraic expressions but must be constant if the process is to be simulated.

• 

The constant elasticity of variance (CEV) process provides an alternative to the lognormal model for equity prices. This model includes the geometric Brownian motion as a special case β=2. The main advantage of such a model is that the volatility of the stock price is no more constant but it is a function of the underlying asset price. In particular, in the CEV model the variations in the underlying asset price are negative correlated with the variations in the volatility level which helps to reduce the well-known volatility smile effect of the lognormal model.

Examples

withFinance:

XCEVProcessx0,μ,σ,β

X_X0

(1)

DriftXt

μ_X0t

(2)

DiffusionXt

σ_X0tβ2

(3)

simplifyDriftXt2β

μ_X0t2βσ2β122+β

(4)

simplifyDiffusionXt2β

σ2β_X0t1β2

(5)

x01.0

x01.0

(6)

μ0.05

μ0.05

(7)

σ0.3

σ0.3

(8)

β1.4

β1.4

(9)

T2.0

T2.0

(10)

SSamplePathXt,t=0..T,timesteps=100,replications=104:

The following set of examples estimates the distribution of max0,_X021 for different values of the elasticity parameter 1.4.

ExpectedValuemaxXT1,0,timesteps=100,replications=104

value=0.2296864556,standarderror=0.003433128717

(11)

β2.0

β2.0

(12)

S1SampleValuesXT,timesteps=100,replications=104

β5

β5

(13)

S2SampleValuesXT,timesteps=100,replications=104

β0.1

β0.1

(14)

S3SampleValuesXT,timesteps=100,replications=104

P1StatisticsFrequencyPlotS1,range=0..3,bincount=10,averageshifted=5,thickness=3,color=red:

P2StatisticsFrequencyPlotS2,range=0..3,bincount=10,averageshifted=5,thickness=3,color=blue:

P3StatisticsFrequencyPlotS3,range=0..3,bincount=10,averageshifted=5,thickness=3,color=green:

plotsdisplayP1,P2,P3,gridlines=true,tickmarks=10,10

References

  

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

  

Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.

Compatibility

• 

The Finance[CEVProcess] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

Finance[BlackScholesProcess]

Finance[BrownianMotion]

Finance[Diffusion]

Finance[Drift]

Finance[ExpectedValue]

Finance[GeometricBrownianMotion]

Finance[ItoProcess]

Finance[SamplePath]

Finance[SampleValues]

Finance[StochasticProcesses]

Finance[WienerProcess]