Finance
CEVProcess
create new constant elasticity of variance (CEV) process
Calling Sequence
Parameters
Options
Description
Examples
References
Compatibility
CEVProcess(x0, mu, sigma, beta, opts)
x0
-
algebraic expression; initial value
mu
algebraic expression; drift parameter
sigma
algebraic expression; volatility parameter
beta
algebraic expression; elasticity parameter
opts
(optional) equation(s) of the form option = value where option is scheme; specify options for the CEVProcess command
scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.
The CEVProcess command creates new constant elasticity of variance (CEV) process S⁡t, which is governed by the stochastic differential equation (SDE)
dS⁡t=μ⁢S⁡t⁢dt+σ⁢S⁡tβ2⁢dW⁡t
where
μ is the drift
σ is the volatility
β is the elasticity
and
W⁡t is the standard Wiener process.
The parameter x0 is the initial value of the process.
The parameters mu, sigma and beta can be any algebraic expressions but must be constant if the process is to be simulated.
The constant elasticity of variance (CEV) process provides an alternative to the lognormal model for equity prices. This model includes the geometric Brownian motion as a special case β=2. The main advantage of such a model is that the volatility of the stock price is no more constant but it is a function of the underlying asset price. In particular, in the CEV model the variations in the underlying asset price are negative correlated with the variations in the volatility level which helps to reduce the well-known volatility smile effect of the lognormal model.
with⁡Finance:
X≔CEVProcess⁡x0,μ,σ,β
X≔_X0
Drift⁡X⁡t
μ⁢_X0⁡t
Diffusion⁡X⁡t
σ⁢_X0⁡tβ2
simplify⁡Drift⁡X⁡t2−β
−μ⁢_X0⁡t2−β−σ2⁢β−12⁢−2+β
simplify⁡Diffusion⁡X⁡t2−β
σ⁢2−β⁢_X0⁡t1−β2
x0≔1.0
μ≔0.05
σ≔0.3
β≔1.4
T≔2.0
S≔SamplePath⁡X⁡t,t=0..T,timesteps=100,replications=104:
The following set of examples estimates the distribution of max⁡0,_X0⁡2−1 for different values of the elasticity parameter 1.4.
ExpectedValue⁡max⁡X⁡T−1,0,timesteps=100,replications=104
value=0.2296864556,standarderror=0.003433128717
β≔2.0
S1≔SampleValues⁡X⁡T,timesteps=100,replications=104
β≔5
S2≔SampleValues⁡X⁡T,timesteps=100,replications=104
β≔0.1
S3≔SampleValues⁡X⁡T,timesteps=100,replications=104
P1≔StatisticsFrequencyPlot⁡S1,range=0..3,bincount=10,averageshifted=5,thickness=3,color=red:
P2≔StatisticsFrequencyPlot⁡S2,range=0..3,bincount=10,averageshifted=5,thickness=3,color=blue:
P3≔StatisticsFrequencyPlot⁡S3,range=0..3,bincount=10,averageshifted=5,thickness=3,color=green:
plotsdisplay⁡P1,P2,P3,gridlines=true,tickmarks=10,10
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
The Finance[CEVProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BlackScholesProcess]
Finance[BrownianMotion]
Finance[Diffusion]
Finance[Drift]
Finance[ExpectedValue]
Finance[GeometricBrownianMotion]
Finance[ItoProcess]
Finance[SamplePath]
Finance[SampleValues]
Finance[StochasticProcesses]
Finance[WienerProcess]
Download Help Document