Finance
EuropeanSwaption
create a new European-style swaption
Calling Sequence
Parameters
Options
Description
Examples
References
Compatibility
EuropeanSwaption(irswap, exercise, opts)
swap
-
simple swap data structures; interest rate swap
exercise
a non-negative constant, a string containing a date specification in a format recognized by Finance[ParseDate], or a date data structure; the maturity time or date
opts
(optional) equation(s) of the form option = value where option is one of referencedate or daycounter; specify options for the EuropeanSwaption command
referencedate = a string containing a date specification in a format recognized by Finance[ParseDate] or a date data structure -- This option provides the evaluation date. It is set to the global evaluation date by default.
daycounter = a name representing a supported day counter (e.g. ISDA, Simple) or a day counter data structure created using the DayCounter constructor -- This option provides a day counter that will be used to convert the period between two dates to a fraction of the year. This option is used only if one of earliestexercise or latestexercise is specified as a date.
The EuropeanSwaption command creates a new European-style swaption with the specified payoff and maturity. The swaption can be exercised only at the time or date specified by the exercise parameter. This is the opposite of an American-style swaption, which can be exercised at any time before the expiration.
The parameter swap is the underlying interest rate swap (see InterestRateSwap for more details).
The parameter exercise specifies the time or date when the option can be exercised. It can be given either as a non-negative constant or as a date in any of the formats recognized by the Finance[ParseDate] command.
The LatticePrice command can be used to price a European-style swaption using any given binomial or trinomial tree.
with⁡Finance:
SetEvaluationDate⁡November 17, 2006:
nominal≔1000.0
fixing_days≔2
start≔AdvanceDate⁡1,Years,EURIBOR
start≔November 17, 2007
maturity≔AdvanceDate⁡start,5,Years,EURIBOR
maturity≔November 17, 2012
discount_curve≔ForwardCurve⁡0.04875825,daycounter=Actual365Fixed
discount_curve≔moduleend module
fixed_schedule≔Schedule⁡start,maturity,Annual,convention=Unadjusted,calendar=EURIBOR
fixed_schedule ≔ moduleend module
floating_schedule≔Schedule⁡start,maturity,Semiannual,convention=ModifiedFollowing,calendar=EURIBOR
floating_schedule ≔ moduleend module
benchmark≔BenchmarkRate⁡6,Months,EURIBOR,0.04875825
benchmark ≔ moduleend module
Construct an interest rate swap receiving the fixed-rate payments in exchange for the floating-rate payments.
swap≔InterestRateSwap⁡nominal,0.,fixed_schedule,benchmark,floating_schedule,0.
swap ≔ moduleend module
Compute the at-the-money rate for this interest rate swap.
atm_rate≔FairRate⁡swap,discount_curve
atm_rate≔0.04995609574
Construct three swaps.
itm_swap≔InterestRateSwap⁡nominal,0.8⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
itm_swap ≔ moduleend module
atm_swap≔InterestRateSwap⁡nominal,1.0⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
atm_swap ≔ moduleend module
otm_swap≔InterestRateSwap⁡nominal,1.2⁢atm_rate,fixed_schedule,benchmark,floating_schedule,0.
otm_swap ≔ moduleend module
Here are cash flows for the paying leg of your interest rate swap.
cash_flows≔CashFlows⁡itm_swap,paying
cash_flows≔39.97833882 on 'November 17, 2008',39.95141436 on 'November 17, 2009',39.96487659 on 'November 17, 2010',39.96487659 on 'November 17, 2011',39.97833882 on 'November 19, 2012'
Here are cash flows for the receiving leg of your interest rate swap.
CashFlows⁡itm_swap,receiving
24.55793340 on 'May 19, 2008',24.54222773 on 'November 17, 2008',24.59383300 on 'May 18, 2009',24.74716833 on 'November 17, 2009',24.47342475 on 'May 17, 2010',24.88406756 on 'November 17, 2010',24.47342475 on 'May 17, 2011',24.88406756 on 'November 17, 2011',24.55868130 on 'May 17, 2012',25.08832826 on 'November 19, 2012'
These are days when coupon payments are scheduled to occur.
dates≔map⁡t↦tdate,cash_flows
dates≔date,date,date,date,date
itm_swaption≔EuropeanSwaption⁡itm_swap,AdvanceDate⁡dates−2,1,Days,EURIBOR
itm_swaption ≔ moduleend module
atm_swaption≔EuropeanSwaption⁡atm_swap,AdvanceDate⁡dates−2,1,Days,EURIBOR
atm_swaption ≔ moduleend module
otm_swaption≔EuropeanSwaption⁡otm_swap,AdvanceDate⁡dates−2,1,Days,EURIBOR
otm_swaption ≔ moduleend module
Price these swaptions using the Hull-White trinomial tree.
a≔0.048696
σ≔0.0058904
model≔HullWhiteModel⁡discount_curve,a,σ
model ≔ moduleend module
time_grid≔TimeGrid⁡YearFraction⁡maturity+0.5,100
time_grid ≔ moduleend module
short_rate_tree≔ShortRateTree⁡model,time_grid
short_rate_tree ≔ moduleend module
Price your swaptions using the tree constructed above.
LatticePrice⁡itm_swaption,short_rate_tree,discount_curve
9.794855431
LatticePrice⁡atm_swaption,short_rate_tree,discount_curve
4.523445349
LatticePrice⁡otm_swaption,short_rate_tree,discount_curve
1.502550032
You can also price these swaptions using an explicitly constructed trinomial tree.
ou_process≔OrnsteinUhlenbeckProcess⁡0.04875,0.04875,1.0,0.3
ou_process≔_X0
tree≔ShortRateTree⁡ou_process,time_grid
tree ≔ moduleend module
Price your swaptions using the second tree.
LatticePrice⁡itm_swaption,tree,discount_curve
8.995305075
LatticePrice⁡atm_swaption,tree,discount_curve
1.528598823
LatticePrice⁡otm_swaption,tree,discount_curve
0.
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice. New York: Springer-Verlag, 2001.
The Finance[EuropeanSwaption] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BermudanSwaption]
Finance[BinomialTree]
Finance[BlackScholesBinomialTree]
Finance[BlackScholesTrinomialTree]
Finance[EuropeanSwaption]
Finance[GetDescendants]
Finance[GetProbabilities]
Finance[GetUnderlying]
Finance[ImpliedBinomialTree]
Finance[ImpliedTrinomialTree]
Finance[LatticeMethods]
Finance[LatticePrice]
Finance[SetProbabilities]
Finance[SetUnderlying]
Finance[StochasticProcesses]
Finance[TreePlot]
Finance[TrinomialTree]
Download Help Document