Finance
ItoProcess
create new Ito process
Calling Sequence
Parameters
Description
Examples
References
Compatibility
ItoProcess(x0, mu, sigma)
ItoProcess(x0, mu, sigma, x, t)
ItoProcess(X, Sigma)
x0
-
the initial value
mu
the drift parameter
sigma
volatility parameter
X
Vector of one-dimensional Ito processes
Sigma
matrix
The ItoProcess command creates a new one- or multi-dimensional Ito process, which is a stochastic process X⁡t governed by the stochastic differential equation (SDE)
dX⁡t=μ⁡X⁡t,t⁢dt+σ⁡X⁡t,t⁢dW⁡t
where
μ⁡X⁡t,t is the drift parameter
σ⁡X⁡t,t is the diffusion parameter
and
W⁡t is the standard Wiener process.
The parameter x0 defines the initial value of the underlying stochastic process. It must be a real constant.
The parameter mu is the drift. In the simplest case of a constant drift mu is real number (that is, any expression of type realcons). Time-dependent drift can be given either as an algebraic expression or as a Maple procedure. If mu is given as an algebraic expression, then the parameter t must be passed to specify which variable in mu should be used as a time variable. A Maple procedure defining a time-dependent drift must accept one parameter (the time) and return the corresponding value for the drift.
The parameter sigma is the diffusion. Similar to the drift parameter, the volatility can be constant or time-dependent.
One can use the ItoProcess command to construct a multi-dimensional Ito process with the given correlation structure. To be more precise, assume that X is an n-dimensional vector whose components X1, ..., Xn are one-dimensional Ito processes. Let μ1,...,μn, and σ1,...,σn be the corresponding drift and diffusion terms. The ItoProcess(X, Sigma) command will create an n-dimensional Ito process Y such that
dY⁡ti=μi⁡Y⁡ti,t+σi⁡Y⁡ti,t⁢dW⁡ti
where W⁡t is an n-dimensional Wiener process whose covariance matrix is Sigma. Note that the matrix Sigma must have numeric coefficients.
with⁡Finance:
Y≔ItoProcess⁡1.0,μ,σ,x,t
Y≔_X0
Drift⁡Y⁡t
μ
Diffusion⁡Y⁡t
σ
Drift⁡exp⁡Y⁡t
μ⁢ⅇ_X0⁡t+σ2⁢ⅇ_X0⁡t2
Diffusion⁡exp⁡Y⁡t
σ⁢ⅇ_X0⁡t
You can generate sample paths for this stochastic process (in order to do this, we must assign numeric values to mu and sigma).
μ≔0.1
σ≔0.5
PathPlot⁡exp⁡Y⁡t,t=0..3,timesteps=100,replications=10
Here is an example of a multi-dimensional Ito process.
μ≔μ
σ≔σ
X0≔100.0,0.
X0≔100.00.
Μ≔μ⁢X1,κ⁢θ−X2
Μ≔μ⁢X1κ⁢θ−X2
Σ≔sqrt⁡X2⁢X1|0.,0.|σ⁢X2
Σ≔X2⁢X10.0.σ⁢X2
S≔ItoProcess⁡X0,Μ,Σ,X,t
S≔_X2
Drift⁡S⁡t
μ⁢_X2⁡t1κ⁢θ−_X2⁡t2
Diffusion⁡S⁡t
_X2⁡t2⁢_X2⁡t100σ⁢_X2⁡t2
κ≔1.0
θ≔0.4
A≔SamplePath⁡S⁡t,t=0..1,timesteps=100,replications=10
PathPlot⁡A,1,thickness=3,markers=false,color=red..blue,axes=BOXED,gridlines=true
PathPlot⁡A,2,thickness=3,markers=false,color=red..blue,axes=BOXED,gridlines=true
ExpectedValue⁡max⁡S⁡11−100,0,timesteps=100,replications=104
value=21.41114565,standarderror=0.3390630872
In this example, construct a two-dimensional Ito process using two one-dimensional projections and a given covariance matrix.
X≔GeometricBrownianMotion⁡100.0,0.05,0.3,t
X≔_X4
Y≔GeometricBrownianMotion⁡100.0,0.07,0.2,t
Y≔_X5
Σ≔1|0.5,0.5|1
Σ≔10.50.51
Z≔ItoProcess⁡X,Y,Σ
Z≔_X6
Drift⁡Z⁡t
0.05⁢_X6⁡t10.07⁢_X6⁡t2
Diffusion⁡Z⁡t
0.3⁢_X6⁡t10.15⁢_X6⁡t10.10⁢_X6⁡t20.2⁢_X6⁡t2
ExpectedValue⁡max⁡X⁡1−Y⁡1,0,timesteps=100,replications=104
value=14.28360857,standarderror=0.2462050212
ExpectedValue⁡max⁡Z⁡11−Z⁡12,0,timesteps=100,replications=104
value=8.073063829,standarderror=0.1512011974
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
The Finance[ItoProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BlackScholesProcess]
Finance[CEVProcess]
Finance[Diffusion]
Finance[Drift]
Finance[ExpectedValue]
Finance[GeometricBrownianMotion]
Finance[ItoProcess]
Finance[PathPlot]
Finance[SamplePath]
Finance[SampleValues]
Finance[StochasticProcesses]
Finance[WienerProcess]
Download Help Document