Finance
MertonJumpDiffusion
create new jump diffusion process
Calling Sequence
Parameters
Description
Examples
References
Compatibility
MertonJumpDiffusion(X, lambda, a, b)
MertonJumpDiffusion(S0, sigma, r, d, lambda, a, b, t, S)
X
-
Black-Scholes process
lambda
intensity of the lognormal Poisson process
a
scale parameter of the lognormal Poisson process
b
shape parameter of the lognormal Poisson process
S0
non-negative constant; initial value
sigma
non-negative constant, procedure, or local volatility structure; volatility
r
non-negative constant, procedure, or yield term structure; risk-free rate
d
non-negative constant, procedure, or yield term structure; dividend yield
t
name; time variable
S
name; state variable
The MertonJumpDiffusion command creates a new jump diffusion process that is governed by the stochastic differential equation (SDE)
dS⁡tS⁡t-=μ⁡t⁢dt+σ⁡t⁢dW⁡t+dJ⁡t
where
μ⁡t is the drift parameter
σ⁡t is the volatility parameter
W⁡t is the standard Wiener process
and
J⁡t is a compound Poisson process of the form
J⁡t=∑j=1N⁡t⁡Yj−1
such that log⁡Yi is independent and lognormally distributed with mean a and standard deviation b.
Both the drift parameter mu and the volatility parameter sigma can be either constant or time-dependent. In the second case they can be specified either as an algebraic expression containing one indeterminate, or as a procedure that accepts one parameter (the time) and returns the corresponding value of the drift (volatility).
Similar to the drift and the volatility parameters, the intensity parameter lambda can be either constant or time-dependent. In the second case it can be specified either as an algebraic expression containing one indeterminate or as a procedure that accepts one parameter (the time).
Both the scale parameter a and the shape parameter b of the underlying lognormal Poisson process must be real constants.
with⁡Finance:
First consider two examples of jump diffusion with low volatility to observe the effect of jumps.
S0≔100
r≔0.05
d≔0.01
σ1≔0.01
a≔0.
b≔0.5
λ1≔2.0
λ2≔0.2
X1≔MertonJumpDiffusion⁡S0,σ1,r,d,λ1,a,b:
PathPlot⁡X1⁡t,t=0..1,timesteps=100,replications=5,color=red..blue,thickness=3,axes=BOXED,gridlines=true
X2≔MertonJumpDiffusion⁡S0,σ1,r,d,λ2,a,b:
PathPlot⁡X2⁡t,t=0..1,timesteps=100,replications=5,color=red..blue,thickness=3,axes=BOXED,gridlines=true
Now consider similar processes but with relatively high volatility.
σ2≔0.5
X3≔MertonJumpDiffusion⁡S0,σ2,r,d,λ2,a,b:
PathPlot⁡X3⁡t,t=0..1,timesteps=100,replications=5,color=red..blue,thickness=3,axes=BOXED,gridlines=true
Y≔BlackScholesProcess⁡S0,σ2,r,d:
X4≔MertonJumpDiffusion⁡Y,λ1,0,b:
PathPlot⁡X4⁡t,t=0..1,timesteps=100,replications=5,color=red..blue,thickness=3,axes=BOXED,gridlines=true
ExpectedValue⁡max⁡X4⁡1−90,0,timesteps=100,replications=105
value=65.32590075,standarderror=0.5535149183
S1≔SampleValues⁡Y⁡1,timesteps=100,replications=105
S2≔SampleValues⁡X4⁡1,timesteps=100,replications=105
P1≔StatisticsFrequencyPlot⁡S1,range=0..300,thickness=3,color=red,bincount=50:
P2≔StatisticsFrequencyPlot⁡S2,range=0..300,thickness=3,color=blue,bincount=50:
plotsdisplay⁡P1,P2,axes=BOXED,gridlines=true:
Here is another way to define the same jump diffusion process.
J≔PoissonProcess⁡λ2,Normal⁡a,b
J≔_P
Z≔t↦Y⁡t⋅exp⁡J⁡t
Z≔t↦Y⁡t⋅ⅇJ⁡t
ExpectedValue⁡max⁡Z⁡1−90,0,timesteps=100,replications=105
value=30.41454912,standarderror=0.1764124093
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Merton, R.C., On the pricing when underlying stock returns are discontinuous, Journal of Financial Economics, (3) 1976, pp. 125-144.
The Finance[MertonJumpDiffusion] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BlackScholesProcess]
Finance[BrownianMotion]
Finance[Diffusion]
Finance[Drift]
Finance[ExpectedValue]
Finance[ForwardCurve]
Finance[GeometricBrownianMotion]
Finance[ImpliedVolatility]
Finance[ItoProcess]
Finance[LocalVolatility]
Finance[LocalVolatilitySurface]
Finance[PathPlot]
Finance[SamplePath]
Finance[SampleValues]
Finance[StochasticProcesses]
Finance[SVJJProcess]
Download Help Document