PoissonProcess - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Finance

  

PoissonProcess

  

create new Poisson process

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

PoissonProcess(lambda)

PoissonProcess(lambda, X)

Parameters

lambda

-

algebraic expression; intensity parameter

X

-

algebraic expression; jump size distribution

Description

• 

A Poisson process with intensity parameter 0<λt, where λt is a deterministic function of time, is a stochastic process N with independent increments such that N0=0 and

PrNt+hNt=1|Nt&equals;lambdath&plus;oh

  

for all 0t. If the intensity parameter λt itself is stochastic, the corresponding process is called a doubly stochastic Poisson process or Cox process.

• 

A compound Poisson process is a stochastic process Jt of the form Jt=i=1NtYi, where Nt is a standard Poisson process and Yi are independent and identically distributed random variables. A compound Cox process is defined in a similar way.

• 

The parameter lambda is the intensity. It can be constant or time-dependent. It can also be a function of other stochastic variables, in which case the so-called doubly stochastic Poisson process (or Cox process) will be created.

• 

The parameter X is the jump size distribution. The value of X can be a distribution, a random variable or any algebraic expression involving random variables.

• 

If called with one parameter, the PoissonProcess command creates a standard Poisson or Cox process with the specified intensity parameter.

Examples

withFinance&colon;

JPoissonProcess1.0&colon;

PathPlotJt&comma;t=0..3&comma;timesteps=50&comma;replications=20&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true&comma;markers=false

Create a subordinated Wiener process with J as a subordinator.

WWienerProcessJ&colon;

PathPlotWt&comma;t=0..3&comma;timesteps=20&comma;replications=10&comma;markers=false&comma;color=red..blue&comma;thickness=3&comma;gridlines=true&comma;axes=BOXED

Next define a compound Poisson process.

YStatisticsRandomVariableNormal0.3&comma;0.5&colon;

λ0.5

λ0.5

(1)

XPoissonProcessλ&comma;Y&colon;

PathPlotXt&comma;t=0..3&comma;timesteps=20&comma;replications=10&comma;markers=false&comma;color=red..blue&comma;thickness=3&comma;gridlines=true&comma;axes=BOXED

Compute the expected value of XT for T=3 and verify that this is approximately equal to λT times the expected value of Y.

T3

T3

(2)

ExpectedValueXT&comma;replications=104&comma;timesteps=100

value=0.4435146732&comma;standarderror=0.007164725012

(3)

λTStatisticsExpectedValueY

0.45

(4)

Here is an example of a doubly stochastic Poisson process for which the intensity parameter evolves as a square-root diffusion.

κ0.354201

κ0.354201

(5)

μ1.21853

μ1.21853

(6)

ν0.538186

ν0.538186

(7)

y01.81

y01.81

(8)

ySquareRootDiffusiony0&comma;κ&comma;μ&comma;ν&colon;

JPoissonProcessyt&colon;

PathPlotyt&comma;t=0..3&comma;timesteps=100&comma;replications=10&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true

PathPlotJt&comma;t=0..3&comma;timesteps=100&comma;replications=10&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true

References

  

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

Compatibility

• 

The Finance[PoissonProcess] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

Finance[BlackScholesProcess]

Finance[CEVProcess]

Finance[Diffusion]

Finance[Drift]

Finance[ExpectedValue]

Finance[GeometricBrownianMotion]

Finance[ItoProcess]

Finance[PathPlot]

Finance[SamplePath]

Finance[SampleValues]

Finance[StochasticProcesses]

Finance[WienerProcess]