Finance
PoissonProcess
create new Poisson process
Calling Sequence
Parameters
Description
Examples
References
Compatibility
PoissonProcess(lambda)
PoissonProcess(lambda, X)
lambda
-
algebraic expression; intensity parameter
X
algebraic expression; jump size distribution
A Poisson process with intensity parameter 0<λ⁡t, where λ⁡t is a deterministic function of time, is a stochastic process N with independent increments such that N⁡0=0 and
Pr⁡N⁡t+h−N⁡t=1|N⁡t=lambda⁡t⁢h+o⁡h
for all 0≤t. If the intensity parameter λ⁡t itself is stochastic, the corresponding process is called a doubly stochastic Poisson process or Cox process.
A compound Poisson process is a stochastic process J⁡t of the form J⁡t=∑i=1N⁡t⁡Yi, where N⁡t is a standard Poisson process and Yi are independent and identically distributed random variables. A compound Cox process is defined in a similar way.
The parameter lambda is the intensity. It can be constant or time-dependent. It can also be a function of other stochastic variables, in which case the so-called doubly stochastic Poisson process (or Cox process) will be created.
The parameter X is the jump size distribution. The value of X can be a distribution, a random variable or any algebraic expression involving random variables.
If called with one parameter, the PoissonProcess command creates a standard Poisson or Cox process with the specified intensity parameter.
with⁡Finance:
J≔PoissonProcess⁡1.0:
PathPlot⁡J⁡t,t=0..3,timesteps=50,replications=20,thickness=3,color=red..blue,axes=BOXED,gridlines=true,markers=false
Create a subordinated Wiener process with J as a subordinator.
W≔WienerProcess⁡J:
PathPlot⁡W⁡t,t=0..3,timesteps=20,replications=10,markers=false,color=red..blue,thickness=3,gridlines=true,axes=BOXED
Next define a compound Poisson process.
Y≔StatisticsRandomVariable⁡Normal⁡0.3,0.5:
λ≔0.5
X≔PoissonProcess⁡λ,Y:
PathPlot⁡X⁡t,t=0..3,timesteps=20,replications=10,markers=false,color=red..blue,thickness=3,gridlines=true,axes=BOXED
Compute the expected value of X⁡T for T=3 and verify that this is approximately equal to λ⁢T times the expected value of Y.
T≔3
ExpectedValue⁡X⁡T,replications=104,timesteps=100
value=0.4435146732,standarderror=0.007164725012
λ⁢T⁢StatisticsExpectedValue⁡Y
0.45
Here is an example of a doubly stochastic Poisson process for which the intensity parameter evolves as a square-root diffusion.
κ≔0.354201
μ≔1.21853
ν≔0.538186
y0≔1.81
y≔SquareRootDiffusion⁡y0,κ,μ,ν:
J≔PoissonProcess⁡y⁡t:
PathPlot⁡y⁡t,t=0..3,timesteps=100,replications=10,thickness=3,color=red..blue,axes=BOXED,gridlines=true
PathPlot⁡J⁡t,t=0..3,timesteps=100,replications=10,thickness=3,color=red..blue,axes=BOXED,gridlines=true
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
The Finance[PoissonProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BlackScholesProcess]
Finance[CEVProcess]
Finance[Diffusion]
Finance[Drift]
Finance[ExpectedValue]
Finance[GeometricBrownianMotion]
Finance[ItoProcess]
Finance[PathPlot]
Finance[SamplePath]
Finance[SampleValues]
Finance[StochasticProcesses]
Finance[WienerProcess]
Download Help Document