Finance
TrinomialTree
construct a recombining trinomial tree
Calling Sequence
Parameters
Options
Description
Examples
References
Compatibility
TrinomialTree(G, S, Pu, Pd, Pm, opts)
TrinomialTree(T, S, Pu, Pd, Pm, opts)
TrinomialTree(T, N, S0, Su, Pu, Sd, Pd, Pm, opts)
G
-
time grid data structure; time grid
S
Array or list; state space of the discretized process
Pu
non-negative constant or operator; probability of moving to the upper descendant in the tree
Pd
non-negative constant or operator; probability of moving to the lower descendant in the tree
Pm
(optional) non-negative constant or operator; probability of moving to the middle descendant in the tree
T
positive; stopping time
N
posint; number of times steps
S0
positive constant; initial value
Su
positive constant; upward movement
Sd
positive constant; downward movement
opts
(optional) equation(s) of the form option = value where option is mutable; specify options for the TrinomialTree command
mutable = truefalse -- This option specifies whether the tree should be mutable or not. The default is true.
The TrinomialTree(G, S, Pu,Pd,Pm, opts) calling sequence constructs a recombining trinomial tree approximating a certain stochastic process. This can be a GeometricBrownianMotion or a mean-reverting process such as OrnsteinUhlenbeckProcess or GaussMarkovProcess. The constructed tree will be based on the discretizations of the time and the state spaces given by G and S.
Assume that the time grid G consists of N points T1, T1, ..., TN. Then the resulting trinomial tree will have N levels, each level representing possible states of the discretized process at time Ti, i=1..N. The parameter S contains all possible states of the discretized process. The number of elements of S should be equal to 2⁢N−1, and the elements of S must be sorted in descending order.
At level i, i=1..N the tree has i nodes, Si,1, ..., Si,i. Each node Si,j has three descendants at level i+1, Si+1,j (the upper descendant), Si+1,j+1 (the middle descendant), and Si+1,j+2 (the lower descendant). The initial state of the underlying process will be equal to SN. The states of the underlying at the level i are SN−i, ..., SN−1, SN, SN+1, ..., SN+i.
The transition probabilities (i.e. the probability of going from Si,j to Si+1,j, the probability of going from Si,j to Si+1,j+1, and the probability of going from Si,j to Si+1,j+2) are defined by Pu, Pd and Pm. The parameter Pm is optional. By default, the middle probability is calculated so that the total sum of all three probabilities is equal to 1, that is, Pm is set to 1−Pd−Pu.
The parameters Pu, Pd, and Pm can be either non-negative real constants or one-parameter operators. If Pu, Pd, or Pm is given in the operator form the corresponding transition probability at level i will be calculated as Pu⁡dt, Pd⁡dt, or Pm⁡dt respectively, where dt=Ti+1−Ti.
The TrinomialTree(T, S, Pu,Pd,Pm, opts) calling sequence is similar except that in this case a uniform time grid with step size TN is used instead of G. In this case N will be deduced from the size of the state array S.
Finally, TrinomialTree(T, N, S0,Su,Pu,Sd,Pd,Pm, opts) calling sequence will construct a trinomial tree based on a uniform time grid with step size TN. Each tree node Si,j will have two descendants Si+1,j=Si,j⁢Su (the upper descendant) and Si+1,j+1=Si,j⁢Sd (the lower descendant). The transition probabilities will be calculated the same way as above.
The resulting data structure can be further manipulated using the Finance[SetUnderlying] and Finance[SetProbabilities] commands.
with⁡Finance:
S≔7.9,7.5,7.1,6.5,5.,3.7,3.3,2.95,2.8
T≔TrinomialTree⁡3,S,0.3,0.7:
Here are three different views of the same tree. The first one uses the standard scale, the second one uses the logarithmic scale, and the third one uses the exponential scale.
TreePlot⁡T,thickness=2,axes=BOXED,gridlines=true
TreePlot⁡T,thickness=2,axes=BOXED,gridlines=true,color=red..blue,scale=logarithmic
TreePlot⁡T,thickness=2,axes=BOXED,gridlines=true,color=red..blue,scale=exponential
Inspect the tree.
GetUnderlying⁡T,5,1
7.900000000
GetProbabilities⁡T,3,1
0.3000000000,0.,0.7000000000
Change the value of the underlying at the uppermost node on level 5 and compare the two trees.
P1≔TreePlot⁡T,thickness=2,axes=BOXED,gridlines=true:
SetUnderlying⁡T,5,1,8.5
P2≔TreePlot⁡T,thickness=2,axes=BOXED,color=red,gridlines=true:
plotsdisplay⁡P1,P2
Here is the same example as before but using a non-homogeneous time grid.
G≔TimeGrid⁡0,1.5,2.0,2.5,3.0
G ≔ moduleend module
T≔TrinomialTree⁡G,S,0.3,0.7:
In this example you will use the third construction.
Su≔1.1
Sd≔0.95
T≔TrinomialTree⁡3,20,100,Su,0.3,Sd,0.7:
Here are two different views of the same tree. The first one uses the standard scale, the second one uses the logarithmic scale.
146.4100000
forito20doSetUnderlying⁡T,i,i,100⁢0.9i−1enddo
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice, New York: Springer-Verlag, 2001.
Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Hull, J., and White, A., Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models, Journal of Derivatives, 1994, 7-16.
Hull, J., and White, A., Using Hull-White Interest Rate Trees, Journal of Derivatives, 1996, 26-36.
The Finance[TrinomialTree] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
Finance[BinomialTree]
Finance[BlackScholesBinomialTree]
Finance[BlackScholesTrinomialTree]
Finance[GetDescendants]
Finance[GetProbabilities]
Finance[GetUnderlying]
Finance[ImpliedBinomialTree]
Finance[ImpliedTrinomialTree]
Finance[LatticeMethods]
Finance[SetProbabilities]
Finance[SetUnderlying]
Finance[StochasticProcesses]
Finance[TreePlot]
Download Help Document