display - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


FunctionAdvisor/display

display information about a mathematical function organized in sections

FunctionAdvisor/table

return a table of information about a mathematical function

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

FunctionAdvisor(math_function)

FunctionAdvisor(display, math_function)

FunctionAdvisor(table, math_function)

Parameters

math_function

-

name of known mathematical function; see type/mathfunc

display

-

(optional) literal name 'display'

table

-

(optional) literal name 'table'; return a table of information about math_function

Description

• 

The FunctionAdvisor(math_function) command returns the information regarding that function available to the system. The information that displays is organized in sections as shown in the examples.

• 

Although the mathematical information in the sections is all computable (for instance, you can click a formula and explore it by using the operations available in the Context Panel, or just copy and paste it to work with it), it is sometimes convenient to have this information directly presented in a form that is more suitable for further computations. For this purpose use the optional argument table, in which case the same information is presented now as a table where the indices are the topics and the entries are the corresponding information.

• 

The calling sequence FunctionAdvisor(display, math_function) is equivalent to FunctionAdvisor(math_function). Prior to Maple 2016, FunctionAdvisor(math_function) returned a table.

Examples

The information about a mathematical function organized in closed sections

FunctionAdvisorsin

sin

describe

sin=sine function

definition

sinz=I2ⅇIz1ⅇIz

with no restrictions on z

classify function

trig

elementary

symmetries

sinz=sinz

sinz&conjugate0;=sinz&conjugate0;

periodicity

sin2πm+z=sinz

m::

sinπm+z=−1msinz

m::

plot

singularities

sinz

z=+I

branch points

sinz

No branch points

branch cuts

sinz

No branch cuts

special values

sinπ6=12

sinπ4=22

sinπ3=32

sin=undefined

sinI=I

sinπn=0

n::

sin2n+1π2=−1

n::odd

sin2n+1π2=1

n::even

identities

sinarcsinz=z

sinz=sinz

sinz=2sinz2cosz2

sinz=1cscz

sinz=2tanz21+tanz22

sinz=I2ⅇIzⅇ−Iz

sinz2=1cosz2

sinz2=12cos2z2

sum form

sinz=_k1=0−1_k1z2_k1+12_k1+1!

with no restrictions on z

series

seriessinz,z,4=z16z3+Oz5

integral form

sinz=z01ⅇ2I_t1zⅆ_t1ⅇIz

with no restrictions on z

differentiation rule

ⅆⅆzsinz=cosz

ⅆnⅆznsinz=sinz+nπ2

DE

fz=sinz

ⅆ2ⅆz2fz=fz

To get a Maple table structure with this same information use the table keyword (to avoid verbosity, use the option quiet)

sin_infoFunctionAdvisortable,sin,quiet

sin_infotabledefinition=sinz=I2ⅇIz1ⅇIz,with no restrictions on z,classify_function=trig,elementary,branch_points=sinz,No branch points,symmetries=sinz=sinz,sinz&conjugate0;=sinz&conjugate0;,differentiation_rule=ⅆⅆzsinz=cosz,ⅆnⅆznsinz=sinz+nπ2,describe=sin=sine function,identities=sinarcsinz=z,sinz=sinz,sinz=2sinz2cosz2,sinz=1cscz,sinz=2tanz21+tanz22,sinz=I2ⅇIzⅇ−Iz,sinz2=1cosz2,sinz2=12cos2z2,sum_form=sinz=_k1=0−1_k1z2_k1+12_k1+1!,with no restrictions on z,integral_form=sinz=z01ⅇ2I_t1zⅆ_t1ⅇIz,with no restrictions on z,special_values=sinπ6=12,sinπ4=22,sinπ3=32,sin=undefined,sinI=I,sinπn=0,n::,sin2n+1π2=−1,n::odd,sin2n+1π2=1,n::even,calling_sequence=sinz,periodicity=sin2πm+z=sinz,m::,sinπm+z=−1msinz,m::,asymptotic_expansion=,series=seriessinz,z,4=z16z3+Oz5,DE=fz=sinz,ⅆ2ⅆz2fz=fz,branch_cuts=sinz,No branch cuts,singularities=sinz,z=+I

(1)

You can now access the information indexing with the FunctionAdvisor topics

sin_infodifferentiation_rule

ⅆⅆzsinz=cosz,ⅆnⅆznsinz=sinz+nπ2

(2)

Compatibility

• 

The FunctionAdvisor/table command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

entries

FunctionAdvisor

FunctionAdvisor/topics

indices

table

type/mathfunc