FunctionAdvisor/known_functions
return a list of the mathematical function's names known by FunctionAdvisor
Calling Sequence
Parameters
Description
Examples
FunctionAdvisor(known_functions)
known_functions
-
literal name; 'known_functions'
The FunctionAdvisor(known_functions) command returns a list of the mathematical function's names implemented in the Maple system.
FunctionAdvisor⁡known_functions
The functions on which information is available via > FunctionAdvisor( function_name ); are:
AiryAi,AiryBi,AngerJ,AppellF1,AppellF2,AppellF3,AppellF4,BellB,BesselI,BesselJ,BesselK,BesselY,Β,ChebyshevT,ChebyshevU,Chi,Ci,CoulombF,CylinderD,CylinderU,CylinderV,Dirac,Ei,EllipticCE,EllipticCK,EllipticCPi,EllipticE,EllipticF,EllipticK,EllipticModulus,EllipticNome,EllipticPi,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,GaussAGM,GegenbauerC,GeneralizedPolylog,HankelH1,HankelH2,Heaviside,HermiteH,HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,Hypergeom,ℑ,InverseJacobiAM,InverseJacobiCD,InverseJacobiCN,InverseJacobiCS,InverseJacobiDC,InverseJacobiDN,InverseJacobiDS,InverseJacobiNC,InverseJacobiND,InverseJacobiNS,InverseJacobiSC,InverseJacobiSD,InverseJacobiSN,JacobiAM,JacobiCD,JacobiCN,JacobiCS,JacobiDC,JacobiDN,JacobiDS,JacobiNC,JacobiND,JacobiNS,JacobiP,JacobiSC,JacobiSD,JacobiSN,JacobiTheta1,JacobiTheta2,JacobiTheta3,JacobiTheta4,JacobiZeta,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,KummerM,KummerU,LaguerreL,LambertW,LegendreP,LegendreQ,LerchPhi,Li,LommelS1,LommelS2,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime,MeijerG,MultiPolylog,NielsenPolylog,Ψ,ℜ,Shi,Si,SphericalY,Ssi,Stirling1,Stirling2,StruveH,StruveL,WeberE,WeierstrassP,WeierstrassPPrime,WeierstrassSigma,WeierstrassZeta,WhittakerM,WhittakerW,Wrightomega,Ζ,abs,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,argument,bernoulli,binomial,conjugate,cos,cosh,cot,coth,csc,csch,csgn,dawson,dilog,doublefactorial,erf,erfc,erfi,euler,exp,factorial,harmonic,hypergeom,ln,lnGAMMA,log,max,min,piecewise,pochhammer,polylog,sec,sech,signum,sin,sinh,tan,tanh,unwindK
You can get a table of information for each function by specifying the function and the table keyword.
info_arccot≔FunctionAdvisor⁡table,arccot
arccot belongs to the subclass "arctrig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "arctrig" ); and FunctionAdvisor( "elementary" );
info_arccot≔table⁡singularities=arccot⁡z,z=∞+∞⁢I,describe=arccot=inverse cotangent function,differentiation_rule=ⅆⅆzarccot⁡z=−1z2+1,ⅆnⅆznarccot⁡z=arccot⁡zn=0−2n−1⁢MeijerG⁡0,0,12,,0,−12+n2,n2,z2⁢z1−notherwise,special_values=arccot⁡−1=3⁢π4,arccot⁡−33=2⁢π3,arccot⁡−3=5⁢π6,arccot⁡0=π2,arccot⁡3=π6,arccot⁡33=π3,arccot⁡1=π4,arccot⁡∞=0,arccot⁡−∞=π,DE=f⁡z=arccot⁡z,ⅆⅆzf⁡z=−1z2+1,definition=arccot⁡z=π2−I⁢ln⁡1−I⁢z−ln⁡1+I⁢z2,with no restrictions on ⁡z,series=series⁡arccot⁡z,z,4=π2−z+13⁢z3+O⁡z5,branch_points=arccot⁡z,z∈−I,I,classify_function=arctrig,elementary,calling_sequence=arccot⁡z,branch_cuts=arccot⁡z,z∈ComplexRange⁡−∞⁢I,−I∨z∈ComplexRange⁡I,∞⁢I,symmetries=arccot⁡−z=π−arccot⁡z,arccot⁡z&conjugate0;=arccot⁡z&conjugate0;,notz∈ComplexRange⁡−∞⁢I,−Iorz∈ComplexRange⁡I,∞⁢I,identities=cot⁡arccot⁡z=z,cot⁡arccot⁡z+arccot⁡y=y⁢z−1z+y,asymptotic_expansion=asympt⁡arccot⁡z,z,4=1z−13⁢z3+O⁡1z5,sum_form=arccot⁡z=∑_k1=0∞⁡−z⁢I⁢z_k1+−I⁢z_k12⁢_k1+1+π2,∧⁡z<1,integral_form=arccot⁡z=∫1+I⁢z1−I⁢z−I2_k1ⅆ_k1+π2,with no restrictions on ⁡z,periodicity=arccot⁡z,No periodicity
info_arccotdescribe
arccot=inverse cotangent function
info_arccotdefinition
arccot⁡z=π2−I⁢ln⁡1−I⁢z−ln⁡1+I⁢z2,with no restrictions on ⁡z
See Also
FunctionAdvisor
FunctionAdvisor/function_classes
FunctionAdvisor/topics
Download Help Document