known_functions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


FunctionAdvisor/known_functions

return a list of the mathematical function's names known by FunctionAdvisor

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

FunctionAdvisor(known_functions)

Parameters

known_functions

-

literal name; 'known_functions'

Description

• 

The FunctionAdvisor(known_functions) command returns a list of the mathematical function's names implemented in the Maple system.

Examples

FunctionAdvisorknown_functions

The functions on which information is available via
    > FunctionAdvisor( function_name );
are:

AiryAi,AiryBi,AngerJ,AppellF1,AppellF2,AppellF3,AppellF4,BellB,BesselI,BesselJ,BesselK,BesselY,Β,ChebyshevT,ChebyshevU,Chi,Ci,CoulombF,CylinderD,CylinderU,CylinderV,Dirac,Ei,EllipticCE,EllipticCK,EllipticCPi,EllipticE,EllipticF,EllipticK,EllipticModulus,EllipticNome,EllipticPi,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,GaussAGM,GegenbauerC,GeneralizedPolylog,HankelH1,HankelH2,Heaviside,HermiteH,HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,Hypergeom,,InverseJacobiAM,InverseJacobiCD,InverseJacobiCN,InverseJacobiCS,InverseJacobiDC,InverseJacobiDN,InverseJacobiDS,InverseJacobiNC,InverseJacobiND,InverseJacobiNS,InverseJacobiSC,InverseJacobiSD,InverseJacobiSN,JacobiAM,JacobiCD,JacobiCN,JacobiCS,JacobiDC,JacobiDN,JacobiDS,JacobiNC,JacobiND,JacobiNS,JacobiP,JacobiSC,JacobiSD,JacobiSN,JacobiTheta1,JacobiTheta2,JacobiTheta3,JacobiTheta4,JacobiZeta,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,KummerM,KummerU,LaguerreL,LambertW,LegendreP,LegendreQ,LerchPhi,Li,LommelS1,LommelS2,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime,MeijerG,MultiPolylog,NielsenPolylog,Ψ,,Shi,Si,SphericalY,Ssi,Stirling1,Stirling2,StruveH,StruveL,WeberE,WeierstrassP,WeierstrassPPrime,WeierstrassSigma,WeierstrassZeta,WhittakerM,WhittakerW,Wrightomega,Ζ,abs,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,argument,bernoulli,binomial,conjugate,cos,cosh,cot,coth,csc,csch,csgn,dawson,dilog,doublefactorial,erf,erfc,erfi,euler,exp,factorial,harmonic,hypergeom,ln,lnGAMMA,log,max,min,piecewise,pochhammer,polylog,sec,sech,signum,sin,sinh,tan,tanh,unwindK

(1)

You can get a table of information for each function by specifying the function and the table keyword.

info_arccotFunctionAdvisortable,arccot

arccot belongs to the subclass "arctrig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "arctrig" ); and FunctionAdvisor( "elementary" );

info_arccottablesingularities=arccotz&comma;z=+I&comma;describe=arccot=inverse cotangent function&comma;differentiation_rule=&DifferentialD;&DifferentialD;zarccotz=1z2+1&comma;&DifferentialD;n&DifferentialD;znarccotz=arccotzn=02n1MeijerG0&comma;0&comma;12&comma;&comma;0&comma;12+n2&comma;n2&comma;z2z1notherwise&comma;special_values=arccot−1=3π4&comma;arccot33=2π3&comma;arccot3=5π6&comma;arccot0=π2&comma;arccot3=π6&comma;arccot33=π3&comma;arccot1=π4&comma;arccot=0&comma;arccot=π&comma;DE=fz=arccotz&comma;&DifferentialD;&DifferentialD;zfz=1z2+1&comma;definition=arccotz=π2Iln1Izln1+Iz2&comma;with no restrictions on z&comma;series=seriesarccotz&comma;z&comma;4=π2z+13z3+Oz5&comma;branch_points=arccotz&comma;z−I&comma;I&comma;classify_function=arctrig&comma;elementary&comma;calling_sequence=arccotz&comma;branch_cuts=arccotz&comma;zComplexRangeI&comma;−IzComplexRangeI&comma;I&comma;symmetries=arccotz=πarccotz&comma;arccotz&conjugate0;=arccotz&conjugate0;&comma;notzComplexRangeI&comma;−IorzComplexRangeI&comma;I&comma;identities=cotarccotz=z&comma;cotarccotz+arccoty=yz1z+y&comma;asymptotic_expansion=asymptarccotz&comma;z&comma;4=1z13z3+O1z5&comma;sum_form=arccotz=_k1=0zIz_k1+−Iz_k12_k1+1+π2&comma;z<1&comma;integral_form=arccotz=1+Iz1IzI2_k1&DifferentialD;_k1+π2&comma;with no restrictions on z&comma;periodicity=arccotz&comma;No periodicity

(2)

info_arccotdescribe

arccot=inverse cotangent function

(3)

info_arccotdefinition

arccotz=π2Iln1Izln1+Iz2&comma;with no restrictions on z

(4)

See Also

FunctionAdvisor

FunctionAdvisor/function_classes

FunctionAdvisor/topics