Grading
AbsoluteValueFunction
construct an AbsoluteValueFunction object
Calling Sequence
Parameters
Options
Description
Examples
Compatibility
AbsoluteValueFunction(t)
AbsoluteValueFunction(p1, p2)
t
-
a linear absolute-value function in one variable
p1
a GridPoint object or list/rtable representing the vertex of the function
p2
a GridPoint object or list/rtable representing a point on the function
domain : a RealRange expression specifying the region over which the function is defined
variable : name used in generated expression if the second calling sequence is used
The AbsoluteValueFunction constructor generates and returns an AbsoluteValueFunction object.
In the first calling sequence, t must have the form a*abs(b*x+c)+d, where a, b, c, and d are constants and x is any variable name.
with⁡Grading
AbsoluteValueFunction,DiffFeedback,DiffPractice,Draw,ExponentialFunction,FactorFeedback,FactorPractice,Feedback,GetData,GetDomain,GetExpression,GradePlot,GridPoint,Inequalities,IntFeedback,IntPractice,IsQuadraticFormula,LimitFeedback,LimitPractice,LinearFunction,LogarithmicFunction,QuadraticFunction,Quiz,QuizBuilder,Segment,SimplifyFeedback,SimplifyPractice,SolveFeedback,SolvePractice
AbsoluteValueFunction⁡2⁢abs⁡x−3+1
<< AbsoluteValueFunction: 2*abs(x-3)+1>>
AbsoluteValueFunction⁡2,0,0,4
<< AbsoluteValueFunction: 2*abs(v-2)>>
A≔AbsoluteValueFunction⁡2,0,0,4,variable=s
A≔<< AbsoluteValueFunction: 2*abs(s-2)>>
GetExpression⁡A
2⁢s−2,s
The Grading:-AbsoluteValueFunction command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Grading:-GradePlot
RealRange
Download Help Document