MaximumMatching - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory

  

MatchingNumber

  

size of maximum matching

  

MaximumMatching

  

find a maximum matching

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

MatchingNumber(G)

MaximumMatching(G)

Parameters

G

-

graph

Description

• 

MaximumMatching(G) returns a set of edges corresponding to a matching of maximum size for the given graph G.

• 

MatchingNumber(G) returns an integer corresponding to the size of a maximum matching for G.

• 

A matching of G, also called an independent edge set, is a subset of the edges of G with the property that no edges in the matching share a common vertex. A matching in which every vertex of G appears in some edge is called a perfect matching.

• 

The strategy employed is the blossom algorithm (see Edmonds, 1965).

Examples

withGraphTheory:

Produce a perfect matching for the hypercube graph.

HSpecialGraphs:-HypercubeGraph3

HGraph 1: an undirected graph with 8 vertices and 12 edge(s)

(1)

MMaximumMatchingH

M000,001,010,011,100,101,110,111

(2)

HighlightEdgesH,M,red

DrawGraphH

Produce a perfect matching for the soccer ball graph.

GSpecialGraphs:-SoccerBallGraph

GGraph 2: an undirected graph with 60 vertices and 90 edge(s)

(3)

MMaximumMatchingG

M1,2,3,4,5,26,6,7,8,9,10,12,11,15,13,14,16,17,18,19,20,22,21,25,23,24,27,28,29,30,31,32,33,34,35,56,36,37,38,39,40,42,41,45,43,44,46,47,48,49,50,52,51,55,53,54,57,58,59,60

(4)

HighlightEdgesG,M,red

DrawGraphG

References

  

Edmonds, Jack. "Paths, trees, and flowers." Canad. J. Math., 17(1965), 449-467. doi:10.4153/CJM-1965-045-4

Compatibility

• 

The GraphTheory[MatchingNumber] and GraphTheory[MaximumMatching] commands were introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

BipartiteMatching

GraphTheory

MaximumIndependentSet