Homogenize - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Groebner

  

Homogenize

  

homogenize polynomials and ideals

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Homogenize(f, h, vars)

Parameters

f

-

polynomial or list or set of polynomials, or a PolynomialIdeal

h

-

variable

vars

-

(optional) list or set of variables

Description

• 

The Homogenize command homogenizes polynomials and polynomial ideals. If f is a polynomial, then a minimal power of h is added to each term so that all resulting terms have the same total degree.  The variables of f can be specified explicitly by an optional third argument vars. Homogenize also maps onto lists and sets of polynomials automatically.

• 

If the first argument f is a PolynomialIdeal, then Homogenize constructs the ideal generated by all homogenizations of polynomials in f.  This is done by homogenizing a total degree Groebner basis for f.

Examples

withGroebner:

fx5+xy2+y4+1

fx5+y4+xy2+1

(1)

Homogenizef,h

h5+h2xy2+hy4+x5

(2)

Homogenizef,h,x

h5y4+h4xy2+h5+x5

(3)

It does not suffice to simply homogenize the generators of an ideal. In the example below xy is in the ideal <F>, and since the polynomial is homogeneous it should be in the homogenization of <F> as well.  

withPolynomialIdeals&colon;

Fx21&comma;xy1

Fx21&comma;xy1

(4)

IdealMembershipxy&comma;F

true

(5)

FhHomogenizeF&comma;h

Fhh2+x2&comma;h2+xy

(6)

IdealMembershipxy&comma;Fh

false

(7)

GroebnerBasisFh&comma;tdegx&comma;y&comma;h

h2+xy&comma;h2+x2&comma;h2xh2y&comma;h4+h2y2

(8)

IdealMembershipxy&comma;HomogenizeF&comma;h

true

(9)

HomogenizeGroebnerBasisF&comma;tdegx&comma;y&comma;h

xy&comma;h2+y2

(10)

References

  

Froberg, R. An Introduction to Grobner Bases. West Sussex: Wiley & Sons, 1997.

See Also

degree

Groebner[Basis]

PolynomialIdeals