Groebner
MultiplicationMatrix
compute multiplication matrices
NormalSet
compute monomial bases
Calling Sequence
Parameters
Description
Examples
References
NormalSet(J, tord)
MultiplicationMatrix(f, ns, rv, G, tord, characteristic=p)
J
-
Groebner basis with respect to tord or a PolynomialIdeal (zero-dimensional)
tord
ShortMonomialOrder
f
a polynomial
ns, rv
normal set (the sequence returned by NormalSet)
p
(optional) characteristic
The NormalSet command computes a monomial basis for the quotient K[x1,...,xn]/J when J is a zero-dimensional ideal. The input can be either a Groebner basis with respect to tord or a PolynomialIdeal, in which case a Groebner basis with respect to tord is computed. The output is a sequence of two elements, ns and rv. ns is sorted list of monomials comprising a basis for the quotient as a vector space, while rv is a table which reverses ns, i.e.: rv[ns[i]] = i for i=1..nops(ns). The purpose of rv is to allow one to assign the coefficients of a polynomial to a vector with respect to ns in linear time.
The number of elements in a normal set ns is equal to the number of solutions of the system over the algebraic closure of the coefficient field.
The MultiplicationMatrix command constructs the multiplication matrix for a polynomial f with respect to J and tord. The rows of this matrix are the normal forms of ns[i]*f written as a vector with respect to ns, and its eigenvalues include the values of the polynomial f on the variety V(J). In particular, if f = x is a variable one obtains the x-coordinates of the solution of J among the eigenvalues of the multiplication matrix. This can be used to solve a zero-dimensional polynomial system.
Example 1: A Lagrange multiplier problem
with⁡Groebner:
f≔x3+2⁢x⁢y⁢z−z2:
g≔x2+y2+z2−1:
F≔f+λ⁢g:
J≔convert⁡VectorCalculusGradient⁡F,λ,x,y,z,set
J≔2⁢λ⁢y+2⁢x⁢z,2⁢λ⁢z+2⁢x⁢y−2⁢z,2⁢λ⁢x+3⁢x2+2⁢y⁢z,x2+y2+z2−1
tord≔tdeg⁡λ,x,y,z
G≔Basis⁡J,tord:
ns,rv≔NormalSet⁡G,tord
ns,rv≔1,z,y,x,λ,z2,y⁢z,x⁢z,λ⁢z,y2,λ2,z3,table⁡λ=5,1=1,z=2,x⁢z=8,λ⁢z=9,x=4,y⁢z=7,z2=6,y2=10,z3=12,λ2=11,y=3
Mx≔MultiplicationMatrix⁡x,ns,rv,G,tord
My≔MultiplicationMatrix⁡y,ns,rv,G,tord
Mz≔MultiplicationMatrix⁡z,ns,rv,G,tord
Mlambda≔MultiplicationMatrix⁡λ,ns,rv,G,tord
Verify that the matrices commute
LinearAlgebraNorm⁡Mx·My−My·Mx,∞
0
Example 2: A geometric intersection problem
f_1≔3⁢x_12⁢x_2+9⁢x_12+2⁢x_1⁢x_2+5⁢x_1+x_2−3:
f_2≔2⁢x_13⁢x_2+6⁢x_13−2⁢x_12−x_1⁢x_2−3⁢x_1−x_2+3:
f_3≔x_13⁢x_2+3⁢x_13+x_12⁢x_2+2⁢x_12:
G≔Basis⁡f_1,f_2,f_3,tdeg⁡x_1,x_2
G≔2⁢x_22−8⁢x_1−5⁢x_2−3,x_1⁢x_2+x_1−x_2+3,2⁢x_12−3⁢x_1+2⁢x_2−6
ns,rv≔NormalSet⁡G,tdeg⁡x_1,x_2
ns,rv≔1,x_2,x_1,table⁡1=1,x_1=3,x_2=2
M1≔MultiplicationMatrix⁡x_1,ns,rv,G,tdeg⁡x_1,x_2
M1≔001−31−13−132
M2≔MultiplicationMatrix⁡x_2,ns,rv,G,tdeg⁡x_1,x_2
M2≔01032524−31−1
M1·M2−M1·M2
000000000
Read the roots of the system from the eigenvalues of the multiplication matrices M1, M2
LinearAlgebraEigenvectors⁡M1
54+65454−6540,154+654154−65413−2⁢−54+3⁢6545⁢14+654−2⁢−54−3⁢6545⁢14−6541110
LinearAlgebraEigenvectors⁡M2
3−34+654−34−654,1314−252+652⁢−34+65414−252−652⁢−34−654114−252+65214−252−652011
Example 3: A celestial mechanics problem. System S4 (Newtonian planar 4-body problem with equal masses)
e1≔−2⁢p3+2⁢p3⁢φ3−4⁢φ3⁢s⁢p2+5⁢φ3⁢s3⁢p−φ3⁢s5:
e2≔−2⁢s⁢p3−2⁢φ3⁢s2+φ3⁢s4−3⁢φ3⁢s2⁢p+2⁢φ3⁢p:
e3≔−2⁢s2+s4−4⁢s2⁢p+φ2+1+4⁢p:
G≔Basis⁡e1,e2,e3,tdeg⁡s,p,φ:
ns,rv≔NormalSet⁡G,tdeg⁡p,s,φ:
Mphi≔MultiplicationMatrix⁡φ,ns,rv,G,tdeg⁡p,s,φ
P37≔sort⁡factor⁡LinearAlgebraCharacteristicPolynomial⁡Mphi,φ
P37≔φ2−3⁢φ37−61⁢φ34+336⁢φ33−240⁢φ32+2052⁢φ31−12120⁢φ30+8400⁢φ29−30456⁢φ28+175113⁢φ27−88548⁢φ26+241040⁢φ25−1364385⁢φ24+338994⁢φ23−1081984⁢φ22+6241506⁢φ21+642162⁢φ20+2319507⁢φ19−15790278⁢φ18−12287376⁢φ17+1386909⁢φ16+11212992⁢φ15+55894536⁢φ14−19889496⁢φ13+53738964⁢φ12−128353329⁢φ11+44215308⁢φ10−172452240⁢φ9+160917273⁢φ8−42764598⁢φ7+217615248⁢φ6−115440795⁢φ5+17124210⁢φ4−139060395⁢φ3+39858075⁢φ2+39858075⁢φ2+16⁢φ48
The minimal polynomial of Mphi is part of the plex Groebner basis of [e1,e2,e3] and P37 is a multiple of it.
L≔GroebnerBasis⁡e1,e2,e3,plex⁡p,s,φ:
normal⁡P37L1
φ41⁢φ2+13
Corless, Robert M. "Groebner Bases and Matrix Eigenproblems." SIGSAM Bulletin (Communications in Computer Algebra), Vol. 30, No. 4, Issue 118, (December 1996): 26-32.
Cox, D.; Little, J.; and O'Shea, D. Using Algebraic Geometry. Springer-Verlag, 1998
See Also
Basis
NormalForm
UnivariatePolynomial
Download Help Document