Walk - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Groebner

  

Walk

  

convert Groebner bases from one ordering to another

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Walk(G, T1, T2, opts)

Parameters

G

-

Groebner basis with respect to starting order T1 or a PolynomialIdeal

T1,T2

-

monomial orders (of type ShortMonomialOrder)

opts

-

optional arguments of the form keyword=value

Description

• 

The Groebner walk algorithm converts a Groebner basis of commutative polynomials from one monomial order to another.  It is frequently applied when a Groebner basis is too difficult to compute directly.

• 

The Walk command takes as input a Groebner basis G with respect to a monomial order T1, and outputs the reduced Groebner basis for G with respect to T2.  If the first argument G is a PolynomialIdeal then a Groebner basis for G with respect to T1 is computed if one is not already known.  

• 

The orders T1 and T2 must be proper monomial orders on the polynomial ring, so 'min' orders such as 'plex_min' and 'tdeg_min' are not supported. Walk does not check that G is a Groebner basis with respect to T1.

• 

Unlike FGLM, the ideal defined by G can have an infinite number of solutions. The Groebner walk is typically not as fast as FGLM on zero-dimensional ideals.

• 

The optional argument characteristic=p specifies the characteristic of the coefficient field. The default is zero.  This option is ignored if G is a PolynomialIdeal.

• 

The optional argument elimination=true forces the Groebner walk to terminate early, before a Groebner basis with respect to T2 is obtained.  If T2 is a lexdeg order with two blocks of variables the resulting list will contain a generating set of the elimination ideal.

• 

The optional argument output=basislm returns the basis in an extended format containing leading monomials and coefficients.  Each element is a list of the form [leading coefficient, leading monomial, polynomial].

• 

Setting infolevel[Walk] to a positive integer value directs the Walk command to output increasingly detailed information about its performance and progress.

Examples

withGroebner:

F110xz6x38y2z2,6z+5y3

F18y2z26x3+10xz,5y36z

(1)

G1BasisF1,tdegx,y,z

G15y36z,4y2z2+3x35xz,15x3y25xyz+24z3,45x696yz5150x4z+125x2z2

(2)

WalkG1,tdegx,y,z,plexx,y,z

5y36z,4y2z2+3x35xz

(3)

aliasα=RootOfz2+z+5

α

(4)

F210yx9x3+2zα24y3α,6α22x2α+9xα28y3x:

G2BasisF2,tdegx,y,z

G210yx+4y3α+9x3+2α+10z,6α+30+2x2α+8y3x+9α+45x,24α+3016αy3z+32y6+56α+10x2+36α+180y3+4α+20xz+72α+90z+36α+45x+60αy

(5)

WalkG2,tdegx,y,z,plexx,y,z

9216y124608αy9z+31104αy9+155520y9+16640αy762208αy6z+293616αy63200y7+77760y6z+1280αy4z+724480y6+149040αy4215080αy3z1600y4z+670680y3α208800y4+732600zy34800αy2+3960αyz+896αz2+984150y3+298890αy156735αz+6000y216200yz+880z2+96228α854550y+1676700z393660,314125516800αy9z415975784120320αy10z25536014336000αy9z3+300987187200y9z4546360629280768αy1132882551603200αy10z10435297443840αy9z2322486272000αy6z58668550430720y10z214135648256000y9z3+1967799836731392αy10+1947158001561600αy9z4917019852800αy7z3+1310100480000αy6z41139103470665728y11359455142707200y10z524766413168640y9z2725594112000y6z5+27199544370884352αy9+235447336673280αy8z14674245120000αy7z2+163796824166400αy6z337324800000αy3z67560832848058368y10670150659686400y9z39028901068800y7z37759825920000y6z47519204604620800αy8+3675750562759680αy7z+227541778560000αy6z2+66355200000αy4z44534963200000αy3z5+32041679675265792y91409502931845120y8z42639851520000y7z2175841686425600y6z337324800000y3z6+2614664021875200αy7+16968987770878080αy6z+5039700480000αy5z2129548782080000αy4z3+21017180160000αy3z47353752910796800y8+257997550049280y7z1314534666240000y6z2213580800000y4z47054387200000y3z5629856000000αxz5+321705392979406400αy61018259361792000αy5z+347786987328000αy4z2+2203937994240000αy3z3+139968000000αyz5209952000000αz6+46656000000xz6107487335683180800y7+39860784187015680y6z2537233920000y5z2380772679680000y4z3209844224640000y3z418743464800000αxz439416496242604800αy5+45006197725728000αy4z+18852048082512000αy3z2+4076179200000αy2z3+58320000000αyz415446376000000αz5+88088744959114400y618392297260032000y5z2230302304512000y4z23045221256960000y3z3+139968000000yz5+94478400000000αxz323046304810528800αy4+163552851034668000αy3z32611248000000αy2z2528160248000000αyz32927664000000αz438688904800000xz426046898913260800y525470717458112000y4z+31476478240152000y3z2+11844403200000y2z3+6298560000000yz417937936000000z5+5550200727030000αxz2+841574249783608500y3α11336483045680000αy2z1020432054600000αyz2+6063266599200000αz3737167716000000xz3568616554967464800y4+682176021898628000zy3+94950792000000y2z2696965508000000yz3870738012000000z4+38444953961075000αxz104840997530040000αy2+95020410601170000αyz+85139930065725000αz23875300052120000xz2307559853657459000y349118173405280000y2z8777828946600000z2y12373762321800000z3+94086819258781500αx200252907899415000αy+597219742017708750αz+84698873079075000xz22027797731340000y2187882578562680000yz+109342506627225000z217319759203700000α+991358206562039625x1534072805076652500y+2118938395306196250z+48514014178143750,40326912αy9205141248y9+121150080αy6z51710400αy6+78382080y6z+10425600αy3z22779336800y6460252800αy4+1331445600αy3z3960000y3z23596400αxz21130633900y3α378064800y4246564000zy3+42460200αxz39096000αyz+42460200αz213032000xz27894611000y3+1702428300αx2617839000αy+3396141950αz+579121000yx80919000xz+14850000yz80919000z2+92534400α+238838625x+22477500y2853557750z+159225750,896αy6736y680αy3z4860y3α2240zy3540αxz+900y31440αx+300αy2880αz+7610x2+100xz960α6075x+8400y12150z4050

(6)

References

  

Amrhein, B.; Gloor, O.; and Kuchlin, W. "On the Walk." Theoretical Comput. Sci., Vol. 187, (1997): 179-202.

  

Collart, S.; Kalkbrener, M.; and Mall, D. "Converting Bases with the Grobner Walk." J. Symbolic Comput., Vol. 3, No. 4, (1997): 465-469.

  

Tran, Q.N. "A Fast Algorithm for Grobner Basis Conversion and Its Applications." J. Symbolic Comput., Vol. 30, (2000): 451-467.

See Also

Basis

FGLM