AbelianInvariants - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : AbelianInvariants

GroupTheory

  

AbelianInvariants

  

compute the Abelian invariants of a group

  

PrimaryInvariants

  

compute the primary invariants of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AbelianInvariants( G )

PrimaryInvariants( G )

Parameters

G

-

a finitely presented group or a permutation group

Description

• 

The AbelianInvariants( G ) command computes the Abelian invariants of the abelian group G. This is returned as a list of two elements; the first entry of the list is a non-negative integer indicating the torsion-free rank, and the second is a list, B, of the orders of the cyclic factors in the canonical decomposition of the torsion subgroup. If B = [ d[1], d[2], ..., d[k] ], then the entries d[i] satisfy d[i] | d[i+1], for 1 <= i < k.

• 

The PrimaryInvariants( G ) command computes the primary invariants of the abelian group G, which represents the primary decomposition of G. This is returned as a list of two elements; the first element is the torsion-free rank (which is 0 if G is finite), and the second is the list of orders of the cyclic direct factors of prime power order.

• 

The group G must be a finitely presented group or a permutation group. Since a permutation group is finite, the torsion-free rank will always be equal to zero.

• 

In the case that G is a finitely presented group, the invariants of the abelianization G/[G,G] of G are computed.

Examples

withGroupTheory&colon;

Ga&comma;b&comma;c|a·b=b·a&comma;a2&comma;b6

Ga&comma;b&comma;ca2&comma;b-1a-1ba&comma;b6

(1)

AbelianInvariantsG

1&comma;2&comma;6

(2)

AbelianInvariantsa&comma;b|a2=a&comma;b

1&comma;2

(3)

GHeldGroupform=fpgroup

GHe

(4)

AbelianInvariantsG

0&comma;

(5)

AbelianInvariantsDihedralGroup8&comma;form=fpgroup

0&comma;2&comma;2

(6)

AbelianInvariantsDihedralGroup8

0&comma;2&comma;2

(7)

AbelianInvariantsDicyclicGroup15

0&comma;4

(8)

AbelianInvariantsDicyclicGroup16

0&comma;2&comma;2

(9)

PrimaryInvariantsHamiltonianGroup800&comma;1

0&comma;2&comma;2&comma;2&comma;2&comma;5&comma;5

(10)

PrimaryInvariantsAbelianGroup2&comma;6&comma;6&comma;15

2&comma;2&comma;2&comma;3&comma;3&comma;3&comma;5

(11)

Compatibility

• 

The GroupTheory[AbelianInvariants] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

• 

The GroupTheory[PrimaryInvariants] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

GroupTheory

GroupTheory[DihedralGroup]

GroupTheory[HeldGroup]