GroupTheory
AffineGeneralLinearGroup
construct the affine general linear group as a permutation group
Calling Sequence
Parameters
Description
Examples
AffineGeneralLinearGroup( n, q )
AGL( n, q )
n
-
a positive integer
q
a prime power greater than 1
The affine general linear group AGL⁡n,q is the semi-direct product of the general linear group GL⁡n,q with the natural module of dimension n over the field with q elements.
The AffineGeneralLinearGroup command produces a permutation group isomorphic to the group AGL⁡n,q.
with⁡GroupTheory:
G≔AffineGeneralLinearGroup⁡1,2
G≔AGL1,2
G≔AGL⁡1,2
G≔AGL⁡1,3
G≔AGL1,3
AreIsomorphic⁡G,Symm⁡3
true
G≔AGL⁡1,4
G≔AGL1,4
AreIsomorphic⁡G,Alt⁡4
G≔AGL⁡1,5
G≔AGL1,5
IsFrobeniusGroup⁡G
PermGroupRank⁡G
2
G≔AGL⁡2,2
G≔AGL2,2
AreIsomorphic⁡G,Symm⁡4
G≔AGL⁡2,3
G≔AGL2,3
Transitivity⁡G
S≔Stabilizer⁡1,G
S≔2,63,85,9,2,93,56,8,2,5,6,7,3,9,8,4
AreIsomorphic⁡S,GL⁡2,3
G≔AGL⁡3,2
G≔AGL3,2
IsPrimitive⁡G
EARNS⁡G
1,52,63,74,8,1,32,45,76,8,1,23,45,67,8
3
AreIsomorphic⁡Stabilizer⁡1,G,GL⁡3,2
G≔AGL⁡3,3
G≔AGL3,3
GroupOrder⁡Stabilizer⁡1,G=GroupOrder⁡GL⁡3,3
11232=11232
1,19,102,20,113,21,124,22,135,23,146,24,157,25,168,26,179,27,18,1,3,24,6,57,9,810,12,1113,15,1416,18,1719,21,2022,24,2325,27,26,1,4,72,5,83,6,910,13,1611,14,1712,15,1819,22,2520,23,2621,24,27
See Also
GroupTheory[AffineSpecialLinearGroup]
GroupTheory[GeneralLinearGroup]
Download Help Document