GroupTheory/AgemoSeries - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/AgemoSeries

GroupTheory

  

AgemoSeries

  

construct the agemo series of a _p_-group

  

OmegaSeries

  

construct the omega series of a _p_-group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

AgemoSeries( G )

OmegaSeries( G )

Parameters

G

-

a permutation group

Description

• 

The agemo series of a p-group G, where p is a prime number, is the descending normal series

G=0G1GrG=1

of G whose terms are the successive agemo subgroups ℧nG of G, where ℧0G=G. See GroupTheory[AgemoPGroup]

• 

The AgemoSeries( G ) command constructs the agemo series of a group G, which must be a finite p-group, for some prime p.

• 

The omega series of a finite p-group G is the ascending normal series

1=Ω0GΩ1GΩrG=G

of G, whose terms are the successive omega subgroups ΩnG of G. See GroupTheory[OmegaPGroup].

• 

The OmegaSeries( G ) command constructs the omega series of a finite p-group G.

• 

The group G must be an instance of a permutation group.

• 

Both the agemo and omega series of G are represented by a NormalSeries object which admits certain operations common to all normal series.  See GroupTheory[Series].

Examples

withGroupTheory:

GDihedralGroup8

GD8

(1)

asAgemoSeriesG

asD8&Agemo;1D8&Agemo;2D8&Agemo;3D8

(2)

numelemsas

4

(3)

osOmegaSeriesG

osD8

(4)

numelemsos

2

(5)

See Also

GroupTheory[AgemoPGroup]

GroupTheory[OmegaPGroup]