AreIsomorphic - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

AreIsomorphic

  

test if two groups are isomorphic

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AreIsomorphic(G1, G2)

AreIsomorphic(G1, G2, assign = iso)

iso(g1)

Domain(iso)

Codomain(iso)

Parameters

G1, G2

-

groups

iso

-

mapping returned by AreIsomorphic

g1

-

element of G1

Description

• 

The AreIsomorphic command tests if two groups are isomorphic. It returns true if they are and false if they are not.

• 

If G1 and G2 are indeed isomorphic, then Maple will eventually attempt to construct an isomorphism. You can have this isomorphism assigned to a variable name by using the assign option: if you specify assign=iso, then the isomorphism will be assigned to the variable name iso. This variable can then function as a procedure (or more precisely, a module with ModuleApply) mapping elements from G1 to G2. Concretely, if gG1, and we have specified assign=iso then the call isog will return the element of G2 corresponding to g.

• 

An isomorphism object assigned by AreIsomorphic can be interrogated about its domain and codomain using the Domain and Codomain procedures. If iso was assigned by a call AreIsomorphicG1,G2,assign=iso, then Domainiso returns G1 and Codomainiso returns G2.

Examples

withGroupTheory:

GGL2,3

GGL2,3

(1)

HSmallGroup48,29

H1,23,114,105,146,157,128,139,1617,4018,4119,3820,3921,4222,3523,3624,3325,3426,3727,4728,4529,4430,4831,4332,46,1,3,42,10,115,20,276,19,307,31,238,32,229,21,2612,36,4313,35,4614,47,3915,48,3816,37,4217,25,2918,24,2833,41,4534,40,44,1,5,9,62,12,16,133,17,21,184,22,26,237,29,8,2810,33,37,3411,38,42,3914,45,15,4419,32,20,3124,27,25,3035,48,36,4740,43,41,46,1,7,9,82,14,16,153,19,21,204,24,26,255,28,6,2910,35,37,3611,40,42,4112,44,13,4517,31,18,3222,30,23,2733,47,34,4838,46,39,43,1,92,163,214,265,67,810,3711,4212,1314,1517,1819,2022,2324,2527,3028,2931,3233,3435,3638,3940,4143,4644,4547,48

(2)

AreIsomorphicH,G

true

(3)

AreIsomorphicG,H,assign=iso

true

(4)

Domainiso

GL2,3

(5)

Codomainiso

1,23,114,105,146,157,128,139,1617,4018,4119,3820,3921,4222,3523,3624,3325,3426,3727,4728,4529,4430,4831,4332,46,1,3,42,10,115,20,276,19,307,31,238,32,229,21,2612,36,4313,35,4614,47,3915,48,3816,37,4217,25,2918,24,2833,41,4534,40,44,1,5,9,62,12,16,133,17,21,184,22,26,237,29,8,2810,33,37,3411,38,42,3914,45,15,4419,32,20,3124,27,25,3035,48,36,4740,43,41,46,1,7,9,82,14,16,153,19,21,204,24,26,255,28,6,2910,35,37,3611,40,42,4112,44,13,4517,31,18,3222,30,23,2733,47,34,4838,46,39,43,1,92,163,214,265,67,810,3711,4212,1314,1517,1819,2022,2324,2527,3028,2931,3233,3435,3638,3940,4143,4644,4547,48

(6)

aPerm1,6,2,3,4,7,8,5

a1,6,2,34,7,8,5

(7)

bPerm1,2,3,6,4,8,5,7

b1,23,64,85,7

(8)

ainG

true

(9)

binG

true

(10)

a·b

1,3,2,64,5,8,7

(11)

isoa·b

1,29,9,282,45,16,443,32,21,314,27,26,305,7,6,810,48,37,4711,43,42,4612,14,13,1517,19,18,2022,24,23,2533,35,34,3638,40,39,41

(12)

isoa·isob

1,29,9,282,45,16,443,32,21,314,27,26,305,7,6,810,48,37,4711,43,42,4612,14,13,1517,19,18,2022,24,23,2533,35,34,3638,40,39,41

(13)

isoa·b

1,29,9,282,45,16,443,32,21,314,27,26,305,7,6,810,48,37,4711,43,42,4612,14,13,1517,19,18,2022,24,23,2533,35,34,3638,40,39,41

(14)

This example demonstrates that the direct product construction is commutative up to isomorphism.

AAlt4

AA4

(15)

BSymm3

BS3

(16)

GDirectProductA,B

G1,2,3,2,3,4,5,6,5,6,7

(17)

HDirectProductB,A

H1,2,1,2,3,4,5,6,5,6,7

(18)

AreIsomorphicG,H

true

(19)

Compatibility

• 

The GroupTheory[AreIsomorphic] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DirectProduct]

GroupTheory[GeneralLinearGroup]

GroupTheory[SmallGroup]

GroupTheory[SymmetricGroup]

Magma[AreIsomorphic]

Perm