GroupTheory
AreIsomorphic
test if two groups are isomorphic
Calling Sequence
Parameters
Description
Examples
Compatibility
AreIsomorphic(G1, G2)
AreIsomorphic(G1, G2, assign = iso)
iso(g1)
Domain(iso)
Codomain(iso)
G1, G2
-
groups
iso
mapping returned by AreIsomorphic
g1
element of G1
The AreIsomorphic command tests if two groups are isomorphic. It returns true if they are and false if they are not.
If G1 and G2 are indeed isomorphic, then Maple will eventually attempt to construct an isomorphism. You can have this isomorphism assigned to a variable name by using the assign option: if you specify assign=iso, then the isomorphism will be assigned to the variable name iso. This variable can then function as a procedure (or more precisely, a module with ModuleApply) mapping elements from G1 to G2. Concretely, if g∈G1, and we have specified assign=iso then the call iso⁡g will return the element of G2 corresponding to g.
An isomorphism object assigned by AreIsomorphic can be interrogated about its domain and codomain using the Domain and Codomain procedures. If iso was assigned by a call AreIsomorphic⁡G1,G2,assign=iso, then Domain⁡iso returns G1 and Codomain⁡iso returns G2.
with⁡GroupTheory:
G≔GL⁡2,3
G≔GL2,3
H≔SmallGroup⁡48,29
H≔1,23,114,105,146,157,128,139,1617,4018,4119,3820,3921,4222,3523,3624,3325,3426,3727,4728,4529,4430,4831,4332,46,1,3,42,10,115,20,276,19,307,31,238,32,229,21,2612,36,4313,35,4614,47,3915,48,3816,37,4217,25,2918,24,2833,41,4534,40,44,1,5,9,62,12,16,133,17,21,184,22,26,237,29,8,2810,33,37,3411,38,42,3914,45,15,4419,32,20,3124,27,25,3035,48,36,4740,43,41,46,1,7,9,82,14,16,153,19,21,204,24,26,255,28,6,2910,35,37,3611,40,42,4112,44,13,4517,31,18,3222,30,23,2733,47,34,4838,46,39,43,1,92,163,214,265,67,810,3711,4212,1314,1517,1819,2022,2324,2527,3028,2931,3233,3435,3638,3940,4143,4644,4547,48
AreIsomorphic⁡H,G
true
AreIsomorphic⁡G,H,assign=iso
Domain⁡iso
GL2,3
Codomain⁡iso
1,23,114,105,146,157,128,139,1617,4018,4119,3820,3921,4222,3523,3624,3325,3426,3727,4728,4529,4430,4831,4332,46,1,3,42,10,115,20,276,19,307,31,238,32,229,21,2612,36,4313,35,4614,47,3915,48,3816,37,4217,25,2918,24,2833,41,4534,40,44,1,5,9,62,12,16,133,17,21,184,22,26,237,29,8,2810,33,37,3411,38,42,3914,45,15,4419,32,20,3124,27,25,3035,48,36,4740,43,41,46,1,7,9,82,14,16,153,19,21,204,24,26,255,28,6,2910,35,37,3611,40,42,4112,44,13,4517,31,18,3222,30,23,2733,47,34,4838,46,39,43,1,92,163,214,265,67,810,3711,4212,1314,1517,1819,2022,2324,2527,3028,2931,3233,3435,3638,3940,4143,4644,4547,48
a≔Perm⁡1,6,2,3,4,7,8,5
a≔1,6,2,34,7,8,5
b≔Perm⁡1,2,3,6,4,8,5,7
b≔1,23,64,85,7
ainG
binG
a·b
1,3,2,64,5,8,7
iso⁡a·b
1,29,9,282,45,16,443,32,21,314,27,26,305,7,6,810,48,37,4711,43,42,4612,14,13,1517,19,18,2022,24,23,2533,35,34,3638,40,39,41
iso⁡a·iso⁡b
This example demonstrates that the direct product construction is commutative up to isomorphism.
A≔Alt⁡4
A≔A4
B≔Symm⁡3
B≔S3
G≔DirectProduct⁡A,B
G≔1,2,3,2,3,4,5,6,5,6,7
H≔DirectProduct⁡B,A
H≔1,2,1,2,3,4,5,6,5,6,7
AreIsomorphic⁡G,H
The GroupTheory[AreIsomorphic] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[DirectProduct]
GroupTheory[GeneralLinearGroup]
GroupTheory[SmallGroup]
GroupTheory[SymmetricGroup]
Magma[AreIsomorphic]
Perm
Download Help Document