Centralizer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Centralizer

  

construct the centralizer of an element of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Centralizer( g, G )

Centraliser( g, G )

Parameters

G

-

a permutation group or a Cayley table group

g

-

an element of G

Description

• 

The centralizer of an element g of a group G is the set of elements of G that commute with g. That is, an element c of G belongs to the centralizer of g if, and only if, g·c=c·g.

• 

The Centralizer( g, G ) command constructs the centralizer of the element g of a group G. The group G must be an instance of a permutation group, a group defined by a Cayley table, or a custom group that defines its own centralizer method.

• 

The centralizer of g in G may also be thought of as the stabilizer of g under the action of G on itself by conjugation.

• 

The Centraliser command is provided as an alias.

Examples

withGroupTheory:

GGroupPerm1,2,Perm1,2,3,4,5

G1,2,1,2,34,5

(1)

CCentralizerPerm1,2,3,G

C4,5,1,2,3,1,2,34,5

(2)

GeneratorsC

4,5,1,2,3,1,2,34,5

(3)

GroupOrderC

6

(4)

Compatibility

• 

The GroupTheory[Centralizer] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[Center]