GroupTheory
ChevalleyE
Calling Sequence
Parameters
Description
Examples
Compatibility
ChevalleyE6( q )
ChevalleyE7( q )
ChevalleyE8( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Chevalley groups E6⁡q , E7⁡q and E8⁡q , for a prime power q, are exceptional simple groups of Lie type.
The ChevalleyE6( q ) command returns a symbolic group representing the group E6⁡q .
The ChevalleyE7( q ) command returns a symbolic group representing the group E7⁡q .
The ChevalleyE8( q ) command returns a symbolic group representing the group E8⁡q .
with⁡GroupTheory:
G≔ChevalleyE6⁡2
G≔E6⁡2
GroupOrder⁡G
214841575522005575270400
IsSimple⁡G
true
G≔ChevalleyE7⁡8
G≔E7⁡8
1270946186620423928101048723119547553777696702476219304626523381888123219216468469857197348448137087576946470151415398400
MinPermRepDegree⁡G
2763174708875728600952247
IsPerfect⁡G
G≔ChevalleyE8⁡3
G≔E8⁡3
18830052912953932311099032439972660332140886784940152038522449391826616580150109878711243949982163694448626420940800000
ClassNumber⁡G
12825
IsSoluble⁡G
false
The GroupTheory[ChevalleyE] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ChevalleyF4]
GroupTheory[ChevalleyG2]
GroupTheory[ExceptionalGroup]
Download Help Document