ChevalleyF4 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

ChevalleyF4

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ChevalleyF4( q )

Parameters

q

-

algebraic; an algebraic expression, taken to be a prime power

Description

• 

The Chevalley group F4q , for a prime power q, is a simple group of Lie type.

• 

The ChevalleyF4( q ) command returns a permutation group isomorphic to the Chevalley group F4q , for q=2. For non-numeric values of the argument q, or for prime powers q larger than 2, a symbolic group representing the group F4q is returned.

Examples

withGroupTheory:

GChevalleyF42:

GroupOrderG

3311126603366400

(1)

IsSimpleG

true

(2)

If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing F4q is returned.

GChevalleyF45

GF45

(3)

GroupOrderG

2131486317725501953125000000000000000

(4)

IsSimpleG

true

(5)

ClassNumberG

1156

(6)

GeneratorsG

Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group

GChevalleyF4q

GF4q

(7)

GroupOrderG

q24q21q61q81q121

(8)

IsSimpleG

true

(9)

MinPermRepDegreeG

q121q4+1q1

(10)

Compatibility

• 

The GroupTheory[ChevalleyF4] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory[ChevalleyG2]

GroupTheory[ExceptionalGroup]