GroupTheory
ChevalleyF4
Calling Sequence
Parameters
Description
Examples
Compatibility
ChevalleyF4( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Chevalley group F4⁡q , for a prime power q, is a simple group of Lie type.
The ChevalleyF4( q ) command returns a permutation group isomorphic to the Chevalley group F4⁡q , for q=2. For non-numeric values of the argument q, or for prime powers q larger than 2, a symbolic group representing the group F4⁡q is returned.
with⁡GroupTheory:
G≔ChevalleyF4⁡2:
GroupOrder⁡G
3311126603366400
IsSimple⁡G
true
If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing F4⁡q is returned.
G≔ChevalleyF4⁡5
G≔F4⁡5
2131486317725501953125000000000000000
ClassNumber⁡G
1156
Generators⁡G
Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group
G≔ChevalleyF4⁡q
G≔F4⁡q
q24⁢q2−1⁢q6−1⁢q8−1⁢q12−1
MinPermRepDegree⁡G
q12−1⁢q4+1q−1
The GroupTheory[ChevalleyF4] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ChevalleyG2]
GroupTheory[ExceptionalGroup]
Download Help Document