ChevalleyG2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

ChevalleyG2

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ChevalleyG2( q )

Parameters

q

-

algebraic; an algebraic expression, taken to be a prime power

Description

• 

The Chevalley group G2q , for a prime power q, is a generically simple group of Lie type. The groups G2q were studied by Dickson in 1905.

• 

The ChevalleyG2( q ) command returns a permutation group isomorphic to the Chevalley group G2q , for prime powers q13. For non-numeric values of the argument q, or for prime powers q larger than 13, a symbolic group representing the group G2q is returned.

• 

Note that the group G22 is not simple, but its derived subgroup is simple (isomorphic to the simple unitary group PSU3,3  .

• 

For values of q for which G2q is available as a permutation group, the generating permutations have orders 2 and 3 in each case.

Examples

withGroupTheory:

GChevalleyG22

G1,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,62

(1)

GroupOrderG

12096

(2)

IsSimpleG

false

(3)

csCompositionSeriesG

cs1,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,621,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,62,1,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,62

(4)

seqIsSimpleH,H=cs

false,true,false

(5)

ClassifyFiniteSimpleGroupcs2

CFSG: Steinberg Group A223=PSU3,3

(6)

IsSimpleDerivedSubgroupG

true

(7)

GChevalleyG27:

GroupOrderG

664376138496

(8)

IsSimpleG

true

(9)

ClassNumberG

72

(10)

GChevalleyG213:

GroupOrderG

3914077489672896

(11)

IsSimpleG

true

(12)

If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing G2q is returned.

GChevalleyG2q

GG2q

(13)

GeneratorsG

Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group

GroupOrderG

q6q61q21

(14)

IsSimpleG

falseq=2trueotherwise

(15)

IsSolubleG

false

(16)

Compatibility

• 

The GroupTheory[ChevalleyG2] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory[ChevalleyF4]

GroupTheory[ExceptionalGroup]