GroupTheory
CycleIndexPolynomial
return the cycle index polynomial of a permutation group
Calling Sequence
Parameters
Description
Examples
Compatibility
CycleIndexPolynomial( G, vars )
G
-
a permutation group
vars
list of names
The cycle index polynomial of a permutation group G encodes, in concise form, the cycle structure of the elements of G. It is the "average" of the cycle index polynomials of the elements of G.
For a permutation p of degree d, the cycle index polynomial in the variables x1, x2, ..., xd is the monomial x1c1⁢x2c2⁢...⁢xdcd, where, for each i, ci is the number of cycles of length i in p.
The CycleIndexPolynomial( G, vars ) command computes the cycle index polynomial of a permutation group G with respect to the variables in the list vars of names.
with⁡GroupTheory:
G≔Group⁡Perm⁡1,2,Perm⁡2,3,4
G≔1,2,2,3,4
CycleIndexPolynomial⁡G,a,b,c,d
124⁢a4+14⁢a2⁢b+13⁢a⁢c+18⁢b2+14⁢d
CycleIndexPolynomial⁡CyclicGroup⁡10,x‖1..10
x11010+x2510+2⁢x525+2⁢x105
CycleIndexPolynomial⁡DihedralGroup⁡7,x‖1..7
114⁢x17+12⁢x1⁢x23+37⁢x7
G≔DihedralGroup⁡7
G≔D7
E≔op⁡Elements⁡G
E≔1,52,46,7,1,6,4,2,7,5,3,1,7,6,5,4,3,2,1,72,63,5,2,73,64,5,1,23,74,6,1,3,5,7,2,4,6,1,34,75,6,1,4,7,3,6,2,5,1,42,35,7,1,5,2,6,3,7,4,1,2,3,4,5,6,7,1,62,53,4,
CT≔sort⁡map⁡PermCycleType,E
CT≔,7,7,7,7,7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
If the vertices of a hexagon are colored with three different colors, then the number of distinct colored hexagons can be calculated by evaluating the cycle index polynomial of the dihedral group of degree 6 (the group of symmetries of a hexagon) with each indeterminate equal to 3.
p≔CycleIndexPolynomial⁡DihedralGroup⁡6,x‖1..6
p≔112⁢x16+14⁢x12⁢x22+13⁢x23+16⁢x32+16⁢x6
eval⁡p,x1=3,x2=3,x3=3,x4=3,x5=3,x6=3
92
As a shortcut, you can use the following calling sequence.
CycleIndexPolynomial⁡DihedralGroup⁡6,`$`⁡3,6
The GroupTheory[CycleIndexPolynomial] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
GroupTheory[CyclicGroup]
GroupTheory[DihedralGroup]
GroupTheory[Elements]
GroupTheory[PermCycleType]
map
op
Perm
sort
with
||
Download Help Document