DihedralGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

DihedralGroup

  

construct a dihedral group of a given degree

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

DihedralGroup( n )

DihedralGroup( n, s )

Parameters

n

-

: algebraic : an expression understood to be a positive integer or

s

-

: equation : (optional) equation of the form form = "fpgroup" or form = "permgroup" (default)

Description

• 

The dihedral group of degree n is the symmetry group of an n-sided regular polygon for n>2. It is generated by a reflection (of order 2), and a rotation (of order n). It acts as a permutation group on the vertices of the regular n-sided polygon.

• 

For n=1, the dihedral group is a cyclic group of order 2.  For n=2, the dihedral group is the non-cyclic group of order 4, also known as the Klein 4-group.

• 

If n=, then an infinite dihedral group (a free product of two groups of order two, or the holomorph of an infinite cyclic group) is returned as a finitely presented group.

• 

The DihedralGroup( n ) command returns a dihedral group, either as a permutation group or a group defined by generators and defining relations. By default, if n is a positive integer, then a permutation group is returned, but a finitely presented group can be requested by passing the option 'form' = "fpgroup". If n= then a finitely presented group is returned, regardless of any form option passed.

• 

If the value of the parameter n is not numeric, then a symbolic group representing the dihedral group of the indicated degree is returned.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GDihedralGroup13

GD13

(1)

GroupOrderG

26

(2)

GDihedralGroup13,form=fpgroup

GD13

(3)

GDihedralGroup17,form=permgroup

GD17

(4)

GroupOrderG

34

(5)

AreIsomorphicDihedralGroup3,Symm3

true

(6)

GroupOrderDihedralGroup3k

6k

(7)

IsNilpotentDihedralGroup6kassumingk::posint

false

(8)

IsNilpotentDihedralGroup2a4bassumingposint

true

(9)

IsFrobeniusGroupDihedralGroup7

true

(10)

IsFrobeniusGroupDihedralGroup6

false

(11)

DrawCayleyTableDihedralGroup5,conjugacy=true

ClassNumberDihedralGroup6nassumingn::posint

3n+3

(12)

ExponentDihedralGroup2n+1assumingn::posint

4n+2

(13)

IsPerfectOrderClassesGroupDihedralGroup9

true

(14)

IsPerfectOrderClassesGroupDihedralGroup10

false

(15)

GDihedralGroup

GD

(16)

IsNilpotentG

false

(17)

IsSupersolubleG

true

(18)

IdentifyFrobeniusGroupDihedralGroup11

22,1

(19)

DisplayCharacterTableDihedralGroup5

insertdirect, content = "<?xml version="1.0" encoding="UTF-8"?><Worksheet><Table interior='none' id='_Table_' hiddenborderdisplay='worksheet' showinput='false' alignment='center' exterior='all' width='100%' showlabel='false' captionalignment='0' title='' drawtitle='false' order='row' drawcaption='false' randomized='false' captionposition='1' showgroup='false' plotalignlists='' pagebreak='none' postexecute='advance'><Table-Column separator='true' weight='15'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>C</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignmen\
    t='centred' style='Text' layout='Normal'>1a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5b</Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>|C|</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field a\
    lignment='centred' style='Text' layout='Normal'>1</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2</Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field a\
    lignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' st\
    yle='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18xNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18xNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group vi\
    ew='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N\
    5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation e\
    xecutable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18yNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18yNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visi\
    ble='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1ErJnVtaW51czA7MTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1ErJnVtaW51czA7MTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSt\
    tb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centr\
    ed' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18zNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18zNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0\
    ' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL\
    0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGV\
    jdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true\
    '><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX180NiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX180NiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi</Equation></Text-field></Input></Group></Table-Cell><Table-C\
    ell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2\
    JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false\

    ' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI</Equation></Text-field></Input></Group></Table-Cell></Table-Row></Table></Worksheet>", state = "", minimal = true

caygrCayleyGraphDihedralGroup4

caygrGraph 1: a directed graph with 8 vertices and 16 arc(s)

(20)

GraphTheory:-DrawGraphcaygr

Compatibility

• 

The GroupTheory[DihedralGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[DicyclicGroup]

GroupTheory[GroupOrder]

GroupTheory[IsNilpotent]