GroupTheory
DihedralGroup
construct a dihedral group of a given degree
Calling Sequence
Parameters
Description
Examples
Compatibility
DihedralGroup( n )
DihedralGroup( n, s )
n
-
: algebraic : an expression understood to be a positive integer or ∞
s
: equation : (optional) equation of the form form = "fpgroup" or form = "permgroup" (default)
The dihedral group of degree n is the symmetry group of an n-sided regular polygon for n>2. It is generated by a reflection (of order 2), and a rotation (of order n). It acts as a permutation group on the vertices of the regular n-sided polygon.
For n=1, the dihedral group is a cyclic group of order 2. For n=2, the dihedral group is the non-cyclic group of order 4, also known as the Klein 4-group.
If n=∞, then an infinite dihedral group (a free product of two groups of order two, or the holomorph of an infinite cyclic group) is returned as a finitely presented group.
The DihedralGroup( n ) command returns a dihedral group, either as a permutation group or a group defined by generators and defining relations. By default, if n is a positive integer, then a permutation group is returned, but a finitely presented group can be requested by passing the option 'form' = "fpgroup". If n=∞ then a finitely presented group is returned, regardless of any form option passed.
If the value of the parameter n is not numeric, then a symbolic group representing the dihedral group of the indicated degree is returned.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔DihedralGroup⁡13
G≔D13
GroupOrder⁡G
26
G≔DihedralGroup⁡13,form=fpgroup
G≔DihedralGroup⁡17,form=permgroup
G≔D17
34
AreIsomorphic⁡DihedralGroup⁡3,Symm⁡3
true
GroupOrder⁡DihedralGroup⁡3⁢k
6⁢k
IsNilpotent⁡DihedralGroup⁡6⁢kassumingk::posint
false
IsNilpotent⁡DihedralGroup⁡2a⁢4bassumingposint
IsFrobeniusGroup⁡DihedralGroup⁡7
IsFrobeniusGroup⁡DihedralGroup⁡6
DrawCayleyTable⁡DihedralGroup⁡5,conjugacy=true
ClassNumber⁡DihedralGroup⁡6⁢nassumingn::posint
3⁢n+3
Exponent⁡DihedralGroup⁡2⁢n+1assumingn::posint
4⁢n+2
IsPerfectOrderClassesGroup⁡DihedralGroup⁡9
IsPerfectOrderClassesGroup⁡DihedralGroup⁡10
G≔DihedralGroup⁡∞
G≔D∞
IsNilpotent⁡G
IsSupersoluble⁡G
IdentifyFrobeniusGroup⁡DihedralGroup⁡11
22,1
Display⁡CharacterTable⁡DihedralGroup⁡5
insertdirect, content = "<?xml version="1.0" encoding="UTF-8"?><Worksheet><Table interior='none' id='_Table_' hiddenborderdisplay='worksheet' showinput='false' alignment='center' exterior='all' width='100%' showlabel='false' captionalignment='0' title='' drawtitle='false' order='row' drawcaption='false' randomized='false' captionposition='1' showgroup='false' plotalignlists='' pagebreak='none' postexecute='advance'><Table-Column separator='true' weight='15'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Column separator='false' weight='100'/><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>C</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignmen\ t='centred' style='Text' layout='Normal'>1a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5a</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5b</Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>|C|</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field a\ lignment='centred' style='Text' layout='Normal'>1</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>5</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2</Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'>2</Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field a\ lignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Text-field alignment='centred' style='Text' layout='Normal'></Text-field></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' st\ yle='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18xNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18xNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group vi\ ew='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N\ 5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation e\ xecutable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18yNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18yNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visi\ ble='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1ErJnVtaW51czA7MTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1ErJnVtaW51czA7MTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSt\ tb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMTYi</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centr\ ed' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18zNiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX18zNiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0\ ' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL\ 0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGV\ jdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8</Equation></Text-field></Input></Group></Table-Cell></Table-Row><Table-Row align='top' separator='true'><Table-Cell columnspan='1' backgroundstyle='1' rowspan='1' fillcolor='[245,255,250]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true\ '><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX180NiI='>LUkjbWlHNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EnY2hpX180NiI=</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMjYi</Equation></Text-field></Input></Group></Table-Cell><Table-C\ ell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi'>LUkjbW5HNiQlKnByb3RlY3RlZEcvJSttb2R1bGVuYW1lR0ksVHlwZXNldHRpbmdHNiRGJSUoX3N5c2xpYkc2I1EiMDYi</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2\ JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYnLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiM0Y8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIyRjxGRUZIRkstRjc2I1EiMUY8</Equation></Text-field></Input></Group></Table-Cell><Table-Cell columnspan='1' backgroundstyle='0' rowspan='1' fillcolor='[255,255,255]' visible='true'><Group view='presentation' hide-input='false' hide-output='false' inline-output='false' drawlabel='true'><Input><Text-field alignment='centred' style='Text' layout='Normal'><Equation executable='false\ ' style='2D Input' input-equation='' display='LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI'>LUklbXJvd0c2JCUqcHJvdGVjdGVkRy8lK21vZHVsZW5hbWVHSSxUeXBlc2V0dGluZ0c2JEYlJShfc3lzbGliRzYlLUklbXN1cEc2JEYlL0YnRig2JC1JKG1mZW5jZWRHNiRGJS9GJ0YoNiMtSSNtbkc2JEYlL0YnRig2I1ErJnVtaW51czA7MTYiLUkmbWZyYWNHNiRGJS9GJ0YoNiUtRjc2I1EiMkY8LUY3NiNRIjVGPC8lKWJldmVsbGVkR1EldHJ1ZUY8LUkjbW9HNiRGJS9GJ0YoNiNRKCZtaW51cztGPC1GLTYkRjEtRj42JS1GNzYjUSIzRjxGRUZI</Equation></Text-field></Input></Group></Table-Cell></Table-Row></Table></Worksheet>", state = "", minimal = true
caygr≔CayleyGraph⁡DihedralGroup⁡4
caygr≔Graph 1: a directed graph with 8 vertices and 16 arc(s)
GraphTheory:-DrawGraph⁡caygr
The GroupTheory[DihedralGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[DicyclicGroup]
GroupTheory[GroupOrder]
GroupTheory[IsNilpotent]
Download Help Document