GroupTheory
DirectFactors
compute the directly indecomposable direct factors of a finite group
IsDirectlyIndecomposable
determine if a finite group is directly indecomposable
Calling Sequence
Parameters
Description
Examples
Compatibility
DirectFactors( G )
IsDirectlyIndecomposable( G )
G
-
a finite group
The DirectFactors( G ) command computes an expression sequence of subgroups of the finite permutation group G such that G is the (internal) direct product of these subgroups, and each subgroup is directly indecomposable.
The Remak-Krull-Schmidt Theorem guarantees that the decomposition is unique up to isomorphism and ordering of the direct factors.
A group is indecomposable if it has no proper non-trivial direct factor. The IsDirectlyIndecomposable( G ) command returns true if G is indecomposable, and false otherwise.
The group G must be an instance of a permutation group.
with⁡GroupTheory:
G≔Alt⁡4
G≔A4
DirectFactors⁡G
A4
IsDirectlyIndecomposable⁡Alt⁡4
true
df≔DirectFactors⁡GL⁡2,4
df≔1,2,34,8,125,10,156,11,137,9,14,1,8,13,14,102,12,6,7,153,4,11,9,5,1,12,5,6,142,4,10,11,73,8,15,13,9
AreIsomorphic⁡GL⁡2,4,DirectProduct⁡df
IsDirectlyIndecomposable⁡df1
IsDirectlyIndecomposable⁡df2
IsDirectlyIndecomposable⁡GL⁡2,4
false
df≔DirectFactors⁡CyclicGroup⁡24
df≔1,4,7,10,13,16,19,222,5,8,11,14,17,20,233,6,9,12,15,18,21,24,1,9,172,10,183,11,194,12,205,13,216,14,227,15,238,16,24
AreIsomorphic⁡CyclicGroup⁡24,DirectProduct⁡op⁡df
IsDirectlyIndecomposable⁡CyclicGroup⁡27
seq⁡IsDirectlyIndecomposable⁡DihedralGroup⁡n,n=2..10
false,true,true,true,false,true,true,true,false
IsDirectlyIndecomposable⁡WreathProduct⁡Symm⁡3,CyclicGroup⁡2
IsDirectlyIndecomposable⁡FrobeniusGroup⁡100,1
The GroupTheory[DirectFactors] and GroupTheory[IsDirectlyIndecomposable] commands were introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[AreIsomorphic]
GroupTheory[CyclicGroup]
GroupTheory[DihedralGroup]
GroupTheory[DirectProduct]
Download Help Document