GroupTheory
DirectProduct
form the direct product of groups
Calling Sequence
Parameters
Description
Examples
Compatibility
DirectProduct(G1,G2,...)
G1,G2, ...
-
group data structures
The DirectProduct command takes a sequence of zero or more groups as input, and returns a group data structure representing the direct product of these groups.
An element of the direct product is a list [s1,s2,...] where s1 is an element from G1, s2 is from G2, and so on.
Therefore, the generators defined by DirectProduct are of the form [s1,e2,e3,..], where s1 is a generator from G1, e2 is the identity from G2, e3 is the identity from G3, and so on. Similarly, we have the generators [e1,s2,e3,..],[e1,e2,s3,...] and so forth.
with⁡GroupTheory:
G≔DirectProduct⁡Alt⁡4,form=fpgroup,DihedralGroup⁡5,PSL⁡2,3
G≔⁢s,t⁢∣⁢s2,t3,s⁢t⁢s⁢t⁢s⁢t,t-1⁢s-1⁢t⁢s⁢t-1⁢s-1⁢t⁢s⁢×D5×PSL2,3
GroupOrder⁡G
1440
Use DirectFactor to access the k-th direct factor of a direct product.
DirectFactor⁡G,2
D5
Access the coordinate projections, as follows.
e≔RandomElement⁡G
e≔1s,t,s,t,1,3,5,2,4,1,32,4
φ≔CanonicalProjection⁡G,2
φ≔<a group morphism>
f≔φ⁡e
f≔1,3,5,2,4
finDihedralGroup⁡5
true
G≔DirectProduct⁡CyclicGroup⁡∞,Symm⁡3
G≔⁢g⁢∣⁢⁢×S3
∞
Construct the Cyclic Group of order 2.
G≔CustomGroup⁡1,`=`⁡`.`,a,b↦a+bmod2,`=`⁡`/`,a↦a
G≔ < a custom group with 1 generator >
Now form the Klein 4 group.
H≔DirectProduct⁡G,G
H≔ < a custom group with 1 generator > × < a custom group with 1 generator >
Generators⁡H
1,0,0,1
We verify the isomorphic permutation form of the Klein 4 group.
AreIsomorphic⁡H,Group⁡1,2,3,4,1,3,2,4
Consider elements of the DirectProduct.
Elements⁡DirectProduct⁡G,G,G
0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1
We verify that DirectProduct is associative and commutative.
K1≔DirectProduct⁡G,DirectProduct⁡SymmetricGroup⁡3,CyclicGroup⁡4,form=fpgroup
K1≔ < a custom group with 1 generator > ×S3×⁢g0⁢∣⁢g04⁢
K2≔DirectProduct⁡DirectProduct⁡G,SymmetricGroup⁡3,CyclicGroup⁡4,form=fpgroup
K2≔ < a custom group with 1 generator > ×S3×C4
AreIsomorphic⁡K1,K2
K1≔DirectProduct⁡H,SymmetricGroup⁡3
K1≔ < a custom group with 1 generator > × < a custom group with 1 generator > ×S3
K2≔DirectProduct⁡SymmetricGroup⁡3,H
K2≔S3× < a custom group with 1 generator > × < a custom group with 1 generator >
The GroupTheory[DirectProduct] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AreIsomorphic]
GroupTheory[CustomGroup]
GroupTheory[CyclicGroup]
GroupTheory[DihedralGroup]
GroupTheory[Elements]
GroupTheory[Group]
GroupTheory[GroupOrder]
GroupTheory[PSL]
GroupTheory[SymmetricGroup]
Download Help Document