GroupTheory
ElementOrder
compute the order of a group element
ElementPower
compute powers of a group element
Calling Sequence
Parameters
Description
Examples
Compatibility
ElementOrder(g, G)
ElementPower(g, n, G)
g
-
group element whose order is to be computed
G
group containing the element g
n
an integer
The order of an element g of a group G is the least positive integer n such that gn is equal to the identity element of G, if one exists, and ∞ otherwise.
The GroupOrder(g, G) command computes the order of the element g of the group G, if possible. Note that this is not always possible in case G is a finitely presented group.
Note that if g is a permutation, then ElementOrder(g, G) is equivalent to PermOrder(g).
The ElementPower( g, n, G ) command computes the power gn of the element g in the group G.
If g is a permutation, then ElementPower( g, n, G ) can be computed more simply as g^n.
with⁡GroupTheory:
G≔Alt⁡4
G≔A4
ElementOrder⁡Perm⁡1,2,4,G
3
PermOrder⁡Perm⁡1,2,4
ElementPower⁡Perm⁡1,2,4,3,G
ElementPower⁡Perm⁡1,2,4,2,G
1,4,2
C≔CayleyTableGroup⁡1|2|3|4|5|6,2|1|4|3|6|5,3|5|1|6|2|4,4|6|2|5|1|3,5|3|6|1|4|2,6|4|5|2|3|1
C≔ < a Cayley table group with 6 elements >
ElementOrder⁡5,C
ElementOrder⁡ElementPower⁡5,3,C,C
1
The GroupTheory[ElementOrder] command was introduced in Maple 2015.
For more information on Maple 2015 changes, see Updates in Maple 2015.
The GroupTheory[ElementPower] command was introduced in Maple 2018.
For more information on Maple 2018 changes, see Updates in Maple 2018.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[CayleyTableGroup]
GroupTheory[Exponent]
GroupTheory[GroupOrder]
Download Help Document