ElementaryGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : ElementaryGroup

GroupTheory

  

ElementaryGroup

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ElementaryGroup( p, n )

ElementaryGroup( p, n, form = f )

Parameters

p

-

algebraic; understood to represent a prime number

n

-

algebraic; understood to represent a positive integer

f

-

string ; either "permgroup" or "fpgroup"

Description

• 

An elementary Abelian group of order pn, where p is a prime number, is a direct product (or direct sum) of n copies of the cyclic group of order p.

• 

The ElementaryGroup( p, n ) command returns an elementary Abelian group of order pn, either as a permutation group or as a finitely presented group, according to the value of the form option. By default, a permutation group is returned.

• 

If either of p and n is not an explicit integer, then a symbolic group representing the elementary group of order pn is returned.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GElementaryGroup3,4

GC34

(1)

GroupOrderG

81

(2)

IsAbelianG

true

(3)

GeneratorsG

1,2,3,4,5,6,7,8,9,10,11,12

(4)

GElementaryGroup3,5,form=fpgroup

GC35

(5)

GElementaryGroup17,3

GC173

(6)

GroupOrderG

4913

(7)

GroupOrderElementaryGroupp,n+m

pn+m

(8)

IsCyclicElementaryGroupp&comma;nassuming1<n

false

(9)

Compatibility

• 

The GroupTheory[ElementaryGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[ElementaryGroup] command was updated in Maple 2020.

See Also

GroupTheory

GroupTheory[CyclicGroup]

GroupTheory[Generators]

GroupTheory[GroupOrder]

GroupTheory[IsAbelian]