ExceptionalGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : ExceptionalGroup

GroupTheory

  

ExceptionalGroup

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ExceptionalGroup( name )

Parameters

name

-

: string : an exceptional group name in {"G2(2)", "G2(3)", "G2(4)", "G2(5)", "R(3)", "R(27)", "Sz(8)", "Sz(32)", "3D4(2)", "3D4(3)", "F4(2)"}

Description

• 

Twisted or exceptional groups of Lie type are a class of finite simple groups. These are the Chevalley groups G2q, Ree groups Rq, Suzuki groups Szq, and Steinberg-Tits triality Groups D43q where q is a power of a prime.

• 

Note that the group G22is not simple, but its derived subgroup is simple (isomorphic to the simple unitary group PSU3,3).

• 

The ExceptionalGroup command returns a permutation group isomorphic to the exceptional group whose name is passed as argument.

Examples

withGroupTheory:

GExceptionalGroupSz(8)

GSz8

(1)

GroupOrderG

29120

(2)

GExceptionalGroup3D4(2)

GD432

(3)

GroupOrderG

211341312

(4)

GExceptionalGroupG2(2)

GG22

(5)

IsSimpleG

false

(6)

LDerivedSubgroupG

LG22,G22

(7)

GroupOrderL

6048

(8)

IsSimpleL

true

(9)

Compatibility

• 

The GroupTheory[ExceptionalGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[OrthogonalGroup]