GroupTheory
ExceptionalGroup
Calling Sequence
Parameters
Description
Examples
Compatibility
ExceptionalGroup( name )
name
-
: string : an exceptional group name in {"G2(2)", "G2(3)", "G2(4)", "G2(5)", "R(3)", "R(27)", "Sz(8)", "Sz(32)", "3D4(2)", "3D4(3)", "F4(2)"}
Twisted or exceptional groups of Lie type are a class of finite simple groups. These are the Chevalley groups G2q, Ree groups Rq, Suzuki groups Szq, and Steinberg-Tits triality Groups D43q where q is a power of a prime.
Note that the group G22is not simple, but its derived subgroup is simple (isomorphic to the simple unitary group PSU3,3).
The ExceptionalGroup command returns a permutation group isomorphic to the exceptional group whose name is passed as argument.
with⁡GroupTheory:
G≔ExceptionalGroup⁡Sz(8)
G≔Sz8
GroupOrder⁡G
29120
G≔ExceptionalGroup⁡3D4(2)
G≔D432
211341312
G≔ExceptionalGroup⁡G2(2)
G≔G22
IsSimple⁡G
false
L≔DerivedSubgroup⁡G
L≔G22,G22
GroupOrder⁡L
6048
IsSimple⁡L
true
The GroupTheory[ExceptionalGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[OrthogonalGroup]
Download Help Document