GroupTheory
GeneralLinearGroup
construct a permutation group isomorphic to the General Linear Group over a finite field
Calling Sequence
Parameters
Description
Examples
Compatibility
GeneralLinearGroup(n, q)
GL( n, q )
n
-
a positive integer
q
power of a prime number
The general linear group GL⁡n,q is the set of all nonsingular n×n matrices over a finite field of size q, where q is a prime power.
If n and q are positive integers, then the GeneralLinearGroup( n, q ) command returns a permutation group isomorphic to the general linear group GL⁡n,q . Otherwise, a symbolic group is returned, for which Maple can do some limited computations.
The abbreviation GL( n, q ) is available as a synonym for GeneralLinearGroup( n, q ).
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
GeneralLinearGroup⁡2,3
GL2,3
GroupOrder⁡GL⁡1,31
30
G≔GL⁡2,5
G≔GL2,5
GroupOrder⁡G
480
cs≔CompositionSeries⁡G
cs≔GL2,5▹1,23,3,112,9,4,175,6,15,187,13,19,218,22,16,1410,12,20,24,1,22,3,142,8,4,165,20,15,106,7,18,199,11,17,2312,13,24,21,5,8,9,7,610,14,11,13,1215,16,17,19,1820,22,23,21,24,5,156,167,178,189,1910,2011,2112,2213,2314,24▹…▹1,32,45,156,187,198,169,1710,2011,2312,2413,2114,22▹
seq⁡GroupOrder⁡S,S=cs
480,240,120,2,1
GroupOrder⁡GL⁡4,3
24261120
ClassNumber⁡GL⁡31,q
q31−q15−q14−q13−q12−q11−q10+2⁢q8+3⁢q7+4⁢q6+q5−3⁢q4−3⁢q3+q
GroupOrder⁡GL⁡n,q
∏k=0n−1⁡qn−qk
GroupOrder⁡GL⁡3,q
q3−1⁢q3−q⁢q3−q2
GroupOrder⁡DerivedSubgroup⁡GL⁡n,q
qn2⁢∏k=1n−1⁡qk+1−1
The GroupTheory[GeneralLinearGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[GeneralLinearGroup] command was updated in Maple 2020.
See Also
GroupTheory[GeneralOrthogonalGroup]
GroupTheory[GeneralUnitaryGroup]
GroupTheory[GroupOrder]
GroupTheory[ProjectiveGeneralLinearGroup]
Download Help Document