GroupTheory
GeneralOrthogonalGroup
construct a permutation group isomorphic to a general orthogonal group
Calling Sequence
Parameters
Description
Examples
Compatibility
GeneralOrthogonalGroup(d, n, q)
GO(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The general orthogonal group GO⁡d,n,q is the set of all n×n matrices over the field with q elements that respect a non-singular quadratic form. The value of d must be 0 for odd n, or 1 or −1 for even n.
The GeneralOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the general orthogonal group GO⁡d,n,q .
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing GO⁡d,n,q is returned.
The command GO(d, n, q) is provided as an alias.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔GeneralOrthogonalGroup⁡0,7,2
G≔GO0,7,2
Generators⁡G
1,2,3,4,5,76,8,11,15,21,279,12,16,22,29,3810,13,18,23,31,4114,19,24,33,44,3417,20,2526,35,45,53,32,4228,36,4730,39,50,56,61,5837,4840,51,46,54,59,6249,55,60,63,52,57,5,67,98,1011,1413,1715,2018,1921,2622,2823,3024,3225,3429,3731,4033,4336,4638,4139,4942,4445,5248,5153,5857,6259,61
G≔GeneralOrthogonalGroup⁡1,4,5
G≔GO1,4,5
GroupOrder⁡G
28800
G≔GeneralOrthogonalGroup⁡−1,4,5
G≔GO-1,4,5
Degree⁡G
104
31200
G≔GeneralOrthogonalGroup⁡0,3,5
G≔GO0,3,5
CharacterTable⁡G
OrderClassPolynomial⁡G,x
24⁢x10+60⁢x6+24⁢x5+60⁢x4+20⁢x3+51⁢x2+x
DerivedSeries⁡G
GO0,3,5▹GO0,3,5,GO0,3,5
Hypercentre⁡G
1,42,83,95,156,167,1710,2211,1412,1813,2319,2420,21
IsMalnormal⁡SylowSubgroup⁡2,G,G
false
GroupOrder⁡PCore⁡2,G
2
IsMalnormal⁡SylowSubgroup⁡3,G,G
IsMalnormal⁡SylowSubgroup⁡5,G,G
GroupOrder⁡GeneralOrthogonalGroup⁡0,7,3
18341406720
GroupOrder⁡GeneralOrthogonalGroup⁡1,8,2
348364800
GroupOrder⁡GeneralOrthogonalGroup⁡−1,8,2
394813440
GroupOrder⁡GeneralOrthogonalGroup⁡−1,4,q
igcd⁡2,q−1⁢igcd⁡2,q⁢q2⁢q2+1⁢q2−1
GroupOrder⁡GeneralOrthogonalGroup⁡1,4,q
igcd⁡2,q−1⁢igcd⁡2,q⁢q2⁢q2−12
The GroupTheory[GeneralOrthogonalGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[GeneralOrthogonalGroup] command was updated in Maple 2020.
See Also
GroupTheory[Degree]
GroupTheory[GeneralLinearGroup]
GroupTheory[GroupOrder]
GroupTheory[SpecialOrthogonalGroup]
Download Help Document