GroupTheory
GeneralSemilinearGroup
construct a permutation group isomorphic to the General Semi-linear Group over a finite field
Calling Sequence
Parameters
Description
Examples
GeneralSemilinearGroup( n, q )
GammaL( n, q )
n
-
a positive integer
q
a power of a prime number
The general semi-linear group ΓL⁡n,q is the group of all semi-linear transformations of an n-dimensional vector space over the field with q elements. It is isomorphic to a semi-direct product of the general linear group GL⁡n,q with the Galois group of the field with q elements over its prime sub-field. Thus, if q is prime, then ΓL⁡n,q and GL⁡n,q are isomorphic.
If n and q are positive integers, then the GeneralSemilinearGroup( n, q ) command returns a permutation group isomorphic to the general semi-linear group ΓL⁡n,q . Otherwise, a symbolic group is returned, for which Maple can do some limited computations.
The abbreviation GammaL( n, q ) is available as a synonym for GeneralSemilinearGroup( n, q ).
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔GeneralSemilinearGroup⁡2,4
G≔ΓL2,4
GroupOrder⁡G
360
G≔GammaL⁡2,5
G≔ΓL2,5
480
AreIsomorphic⁡G,GL⁡2,5
true
G≔GammaL⁡2,9
G≔ΓL2,9
cs≔CompositionSeries⁡G
cs≔ΓL2,9▹1,73,12,78,2,38,24,393,48,31,53,6,69,62,674,13,43,14,8,26,77,255,59,46,56,7,34,65,289,30,61,21,18,60,32,1510,22,64,63,20,17,47,4511,68,76,33,19,52,44,5716,55,42,49,23,29,75,7127,40,74,58,54,80,37,3536,70,51,79,72,50,66,41,1,60,49,59,2,30,71,343,80,16,73,6,40,23,384,50,29,48,8,70,55,695,20,75,26,7,10,42,139,63,72,27,18,45,36,5411,12,35,61,19,24,58,3214,56,39,53,25,28,78,6715,22,68,65,21,17,52,4631,41,74,57,62,79,37,3343,64,51,76,77,47,66,44,9,36,18,7210,37,19,7311,38,20,7412,39,21,7513,40,22,7614,41,23,7715,42,24,7816,43,25,7917,44,26,8027,63,54,4528,64,55,4629,65,56,4730,66,57,4831,67,58,4932,68,59,5033,69,60,5134,70,61,5235,71,62,53,9,63,72,27,18,45,36,5410,64,73,28,19,46,37,5511,65,74,29,20,47,38,5612,66,75,30,21,48,39,5713,67,76,31,22,49,40,5814,68,77,32,23,50,41,5915,69,78,33,24,51,42,6016,70,79,34,25,52,43,6117,71,80,35,26,53,44,62▹…▹1,23,64,85,79,1810,2011,1912,2413,2614,2515,2116,2317,2227,5428,5629,5530,6031,6232,6133,5734,5935,5836,7237,7438,7339,7840,8041,7942,7543,7744,7645,6346,6547,6448,6949,7150,7051,6652,6853,67▹
seq⁡GroupOrder⁡S,S=cs
11520,5760,2880,1440,720,2,1
GroupOrder⁡GammaL⁡4,4
5922201600
GroupOrder⁡GammaL⁡n,q
logp⁡q⁢∏k=0n−1⁡qn−qk
GroupOrder⁡GammaL⁡3,q
logp⁡q⁢q3−1⁢q3−q⁢q3−q2
See Also
GF
GroupTheory[GeneralLinearGroup]
GroupTheory[GroupOrder]
GroupTheory[SpecialSemilinearGroup]
Download Help Document